
F5 Python SDK Documentation
Release 0.1.3

F5 Networks

April 01, 2016

Contents

1 Introduction 1

2 Quick Start 3
2.1 Installation . 3
2.2 Basic Example . 3

3 Detailed Documentation 5
3.1 User Guide . 5

3.1.1 Basic Concepts . 5
REST URIs . 5
REST Endpoints . 6
Dynamic Attributes . 6
iControl REST kind Parameters . 6
Methods . 7

3.1.2 REST API Endpoints . 7
Overview . 7
Endpoints . 8

3.1.3 Python Object Paths . 14
Organizing Collection . 15
Collection . 16
Resource . 16
Subcollection . 17
Subcollection Resource . 18

3.1.4 Coding Example . 18
3.1.5 Further Reading . 20

3.2 Developer Guide . 20
3.3 f5 . 20

3.3.1 f5 package . 20
f5.bigip . 20
f5.common . 218
f5.sdk_exception . 219

4 Copyright 221

5 License 223
5.1 Apache V2.0 . 223
5.2 Contributor License Agreement . 223

Python Module Index 225

i

ii

CHAPTER 1

Introduction

This project implements an object model based SDK for the F5 Networks® BIG-IP® iControl® REST interface.
Users of this library can create, edit, update, and delete configuration objects on a BIG-IP®. For more information on
the basic principals that the SDK uses, see the User Guide.

1

F5 Python SDK Documentation, Release 0.1.3

2 Chapter 1. Introduction

CHAPTER 2

Quick Start

2.1 Installation

$> pip install f5-sdk

Note: If you are using a pre-release version you must use the --pre option with the pip command.

2.2 Basic Example

from f5.bigip import BigIP

Connect to the BigIP
bigip = BigIP("bigip.example.com", "admin", "somepassword")

Get a list of all pools on the BigIP and print their name and their
members' name
pools = bigip.ltm.pools.get_collection()
for pool in pools:

print pool.name
for member in pool.members_s.get_collection():

print member.name

Create a new pool on the BigIP
mypool = bigip.ltm.pools.pool.create(name='mypool', partition='Common')

Load an existing pool and update its description
pool_a = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_a.description = "New description"
pool_a.update()

Delete a pool if it exists
if bigip.ltm.pools.pool.exists(name='mypool', partition='Common'):

pool_b = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_b.delete()

3

F5 Python SDK Documentation, Release 0.1.3

4 Chapter 2. Quick Start

CHAPTER 3

Detailed Documentation

3.1 User Guide

To get the most out of using our SDK, it’s useful to understand the basic concepts and principals we used when we
designed it. It is also important that you are familiar with the F5® BIG-IP® and, at a minimum, how to configure
BIG-IP® using the configuration utility (the GUI). More useful still would be if you are already familiar with the
iControl® REST API.

3.1.1 Basic Concepts

Familiarizing yourself with the following underlying basic concepts will help you get up and running with the SDK.

Important: When using the SDK, you’ll notice that collection objects are referenced using the plural version of the
Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to
the name when referring to the collection.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

• LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path
f5.bigip.pools.get_collection().

• Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via
f5.bigip.net.tunnels_s.get_collection().

REST URIs

You can directly infer REST URIs from the python expressions, and vice versa.

5

https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx

F5 Python SDK Documentation, Release 0.1.3

Examples

Expression: bigip = BigIP('a', 'b', 'c')
URI Returned: https://a/mgmt/tm/

Expression: bigip.ltm
URI Returned: https://a/mgmt/tm/ltm/

Expression: pools1 = bigip.ltm.pools
URI Returned: https://a/mgmt/tm/ltm/pool

Expression: pool_a = pools1.create(partition="Common", name="foo")
URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

REST Endpoints

A set of basic REST endpoints can be derived from the object’s URI and kind (listed below).

• Organizing Collection

• Collection

• Resource

• Subcollection

• Subcollection Resource

Dynamic Attributes

The python object’s attribute can be created dynamically based on the JSON returned when querying the REST API.

iControl REST kind Parameters

Almost all iControl REST API entries contain a parameter named kind. This parameter provides information about
the object that lets you know what you should expect to follow it. The iControl REST API uses three types of kind:
collectionstate, state, and stats.

kind Associated Objects Methods
collectionstateOrganizingCollection,

Collection
exists()

state Resource create(), update(), refresh(), delete(),
load(), exists()

stats Resource refresh(), load(), exists()

6 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Methods

Method HTTP Command Action(s)
create() POST

creates a new resource on the device
with its own URI

update() PUT

submits a new configuration to the
device resource; sets the
Resource attributes to the state
reported by the device

refresh() GET

obtains the state of a device
resource; sets the representing
Python Resource Object; tracks
device state via its attributes

delete() DELETE

removes the resource from the
device, sets self.__dict__
to {’deleted’: True}

load() GET

obtains the state of an existing
resource on the device; sets
the Resource attributes to match that
state

exists() GET

checks for the existence of a named
object on the BIG-IP®

Note: Available methods are restricted according to the object’s kind.

3.1.2 REST API Endpoints

Overview

REST URI Segments

We’ll start exploring the iControl REST API’s endpoints with an example detailing how the endpoint types map to the
different parts of the URI. The different types of resources used by the SDK shown in the example are explained in
detail later in this guide.

Example: The URI below returns the JSON for an LTM pool member.

3.1. User Guide 7

F5 Python SDK Documentation, Release 0.1.3

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
|-------|---|----|--------------|-------|-------------|

OC OC Coll Resource SC SubColl Resrc

OC Organizing Collection
Coll Collection
Resource Resource
SC Subcollection
SubColl Resrc Subcollection Resource

Endpoints

Organizing Collection

kind: collectionstate

The iControl REST User Guide defines an organizing collection as a URI that designates all of the tmsh subordinate
modules and components in the specified module. Organizing collections, which appear directly under f5.bigip,
correspond to the various modules available on the BIG-IP® (for example, f5.bigip.ltm).

The organizing collection names correspond to the items that appear in the drawers on the left-hand side of the BIG-
IP® configuration utility (the GUI). The module names are abbreviated in the REST API, but the mapping is otherwise
pretty straightforward. For example, the SDK module f5.bigip.sys maps to the System drawer in the GUI.

OrganizingCollection objects do not have configuration parameters. As shown in the example below, the
JSON blob received in response to an HTTP GET for an organizing collection object contains an items parameter
with a list of references to Collection and Resource objects.

Example

{
"kind":"tm:ltm:ltmcollectionstate",
"selfLink":"https://localhost/mgmt/tm/ltm?ver=11.5.0",
"items":[

{
"reference":{
"link":"https://../mgmt/tm/ltm/auth?ver=11.5.0"
}
},
{
"reference":{
"link":"https://../mgmt/tm/ltm/classification?ver=11.5.0"
}
},

]
}

Collection

kind: collectionstate

A collection is similar to an Organizing Collection in that no configurations can be applied to it. A collection differs
from an organizing collection in that a collection only contains references to objects of the same type in its items
parameter.

8 Chapter 3. Detailed Documentation

https://devcentral.f5.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160

F5 Python SDK Documentation, Release 0.1.3

Important: When using the SDK, you’ll notice that collection objects are referenced using the plural version of the
Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to
the name when referring to the collection.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

• LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path
f5.bigip.pools.get_collection().

• Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via
f5.bigip.net.tunnels_s.get_collection().

You can use get_collection() to get a list of the objects in the collection.

The example below shows the JSON you would get back from a REST collection endpoint. Note that it contains an
items attribute that contains Resource objects (we know the objects are resources because their kind ends in
state).

3.1. User Guide 9

F5 Python SDK Documentation, Release 0.1.3

Example

{
kind: "tm:ltm:pool:poolcollectionstate",
selfLink: "https://localhost/mgmt/tm/ltm/pool?ver=11.6.0",
items: [

{
kind: "tm:ltm:pool:poolstate",
name: "my_newpool",
partition: "Common",
fullPath: "/Common/my_newpool",
generation: 76,
selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool?ver=11.6.0",
allowNat: "yes",
allowSnat: "yes",
description: "This is my pool",
ignorePersistedWeight: "disabled",
ipTosToClient: "pass-through",
ipTosToServer: "pass-through",
linkQosToClient: "pass-through",
linkQosToServer: "pass-through",
loadBalancingMode: "round-robin",
minActiveMembers: 0,
minUpMembers: 0,
minUpMembersAction: "failover",
minUpMembersChecking: "disabled",
queueDepthLimit: 0,
queueOnConnectionLimit: "disabled",
queueTimeLimit: 0,
reselectTries: 0,
serviceDownAction: "none",
slowRampTime: 10,
membersReference: {
link: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool/members?ver=11.6.0",
isSubcollection: true
}

},
{

kind: "tm:ltm:pool:poolstate",
name: "mypool",
partition: "Common",
fullPath: "/Common/mypool",
generation: 121,
selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0",
allowNat: "yes",
allowSnat: "yes",
ignorePersistedWeight: "disabled",
ipTosToClient: "pass-through",
ipTosToServer: "pass-through",
linkQosToClient: "pass-through",
linkQosToServer: "pass-through",
loadBalancingMode: "round-robin",
minActiveMembers: 0,
minUpMembers: 0,
minUpMembersAction: "failover",
minUpMembersChecking: "disabled",
queueDepthLimit: 0,
queueOnConnectionLimit: "disabled",
queueTimeLimit: 0,
reselectTries: 0,
serviceDownAction: "none",
slowRampTime: 10,
membersReference: {
link: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0",
isSubcollection: true
}

},
]

}

10 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Resource

kind: state

A resource is a fully configurable object for which the CURDLE methods are supported.

• create()

• refresh()

• update()

• delete()

• load()

• exists()

When using the SDK, you will notice that resources are instantiated via their collection. Once created or loaded,
resources contain attributes that map to the JSON fields returned by the BIG-IP®.

Example

To load a f5.bigip.ltm.node.Node object, you would use the following code.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> n = bigip.ltm.nodes.node.load(partition='Common', name='192.168.15.15')
>>> print n.raw
{

"kind":"tm:ltm:node:nodestate",
"name":"192.168.15.15",
"partition":"Common",
"fullPath":"/Common/192.168.15.15",
"generation":16684,
"selfLink":"https://localhost/mgmt/tm/ltm/node/~Common~192.168.15.15?ver=11.6.0",
"address":"192.168.15.15",
"connectionLimit":0,
"dynamicRatio":1,
"ephemeral":"false",
"fqdn":{

"addressFamily":"ipv4",
"autopopulate":"disabled",
"downInterval":5,
"interval":3600

},
"logging":"disabled",
"monitor":"default",
"rateLimit":"disabled",
"ratio":1,
"session":"user-enabled",
"state":"unchecked"

}

The output of the f5.bigip.ltm.node.Node.raw shows all of the available attributes.
Once you have loaded the object, you can access the attributes as shown below.

>>> n.fqdn['downInterval'] = 10
>>> n.logging = 'enabled'
>>> n.update()

3.1. User Guide 11

F5 Python SDK Documentation, Release 0.1.3

Subcollection

kind: collectionstate

A subcollection is a Collection that’s attached to a higher-level Resource object. Subcollections are almost
exactly the same as collections; the exception is that they can only be accessed via the resource they’re attached to
(the ‘parent’ resource). A subcollection can be identified by the value isSubcollection: true, followed by
an items attribute listing the subcollection’s resources. Just as with collections, you can use get_collection()
to get a list of the resources in the subcollection.

Example

A pool resource has a members_s subcollection attached to it; you must create or load the ‘parent’ resource
(pool) before you can access the subcollection (members_s).

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> members = pool.members_s.get_collection()

Note: In the above example, the subcollection object – members_s – ends in _s because the subcollection resource
object name (members) is already plural.

The JSON returned for a pool with one member is shown below. Note the highlighted rows, which indicate the
subcollection.

12 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Example

{
"kind": "tm:ltm:pool:poolstate",
"name": "p1",
"partition": "Common",
"fullPath": "/Common/p1",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1?expandSubcollections=true&ver=11.6.0",
"allowNat": "yes",
"allowSnat": "yes",
"ignorePersistedWeight": "disabled",
"ipTosToClient": "pass-through",
"ipTosToServer": "pass-through",
"linkQosToClient": "pass-through",
"linkQosToServer": "pass-through",
"loadBalancingMode": "round-robin",
"minActiveMembers": 0,
"minUpMembers": 0,
"minUpMembersAction": "failover",
"minUpMembersChecking": "disabled",
"queueDepthLimit": 0,
"queueOnConnectionLimit": "disabled",
"queueTimeLimit": 0,
"reselectTries": 0,
"serviceDownAction": "none",
"slowRampTime": 10,
"membersReference": {

"link": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members?ver=11.6.0",
"isSubcollection": true,
"items": [

{
"kind": "tm:ltm:pool:members:membersstate",
"name": "n1:80",
"partition": "Common",
"fullPath": "/Common/n1:80",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
"address": "192.168.51.51",
"connectionLimit": 0,
"dynamicRatio": 1,
"ephemeral": "false",
"fqdn": {
"autopopulate": "disabled",

}
"inheritProfile": "enabled",
"logging": "disabled",
"monitor": "default",
"priorityGroup": 0,
"rateLimit": "disabled",
"ratio": 1,
"session": "user-enabled",
"state": "unchecked",

}
]

},
}

3.1. User Guide 13

F5 Python SDK Documentation, Release 0.1.3

Subcollection Resource

kind: state

A subcollection resource is essentially the same as a resource. As with collections and subcollections, the only
difference between the two is that you must access the subcollection resource via the subcollection attached to the
main resource.

Example

To build on the subcollection example: pool is the resource, members_s is the subcollection, and members
(the actual pool member) is the subcollection resource.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> member = pool.members_s.members.load(partition='Common', name='n1:80')

The JSON below shows a f5.bigip.ltm.pool.members_s.members object.

{
"kind": "tm:ltm:pool:members:membersstate",
"name": "n1:80",
"partition": "Common",
"fullPath": "/Common/n1:80",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
"address": "192.168.51.51",
"connectionLimit": 0,
"dynamicRatio": 1,
"ephemeral": "false",
"fqdn": {

"autopopulate": "disabled",
}
"inheritProfile": "enabled",
"logging": "disabled",
"monitor": "default",
"priorityGroup": 0,
"rateLimit": "disabled",
"ratio": 1,
"session": "user-enabled",
"state": "unchecked",

}

Tip: It’s easy to tell that this is a Resource object because the kind is state, not collectionstate.

3.1.3 Python Object Paths

The object classes used in the SDK directly correspond to the REST endpoints you’d use to access the objects via the
API. Remembering the patterns below will help you easily derive an SDK object class from an object URI.

1. Objects take the form f5.<product>.<organizing_collection>.<collection>.<resource>.<subcollection>.<resource>.

2. The collection and the resource generally have the same name, so the collection is the plural version of the
resource. This means that you add s to the end of the resource to get the collection, unless the resource already

14 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

ends in s. If the resource is already plural, add _s to get the collection.

3. The object itself is accessed by its CamelCase name, but the usage of the object is all lowercase.

4. The characters . and - are always replaced with _ in the SDK.

Because the REST API endpoints have a hierarchical structure, you need to load/create the highest-level objects
before you can load lower-level ones. The example below shows how the pieces of the URI correspond to the REST
endpoints/SDK classes. The first part of the URI is the IP address of your BIG-IP®.

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
|-------|---|----|--------------|-------|-------------|

OC OC Coll Resource SC SubColl Resrc

OC Organizing Collection
Coll Collection
Resource Resource
SC Subcollection
SubColl Resrc Subcollection Resource

In the sections below, we’ll walk through the Python object paths using LTM® pools and pool members as examples.
You can also skip straight to the Coding Example.

Organizing Collection

The mgmt/tm and ltm organizing collections define what area of the BIG-IP® you’re going to work with. The
mgmt/tm organizing collection corresponds to the management plane of your BIG-IP® device (TMOS). Loading
ltm indicates that we’re going to work with the BIG-IP®’s Local Traffic Manager® module.

Endpoint http://192.168.1.1/mgmt/tm/
Kind tm:restgroupresolverviewstate
Type organizing collection
Class f5.bigip.BigIP
Instantiation bigip = BigIP(’192.168.1.1’, ’myuser’, ’mypass’)

Endpoint http://192.168.1.1/mgmt/tm/ltm
Kind tm:ltm:collectionstate
Type organizing collection
Class f5.bigip.ltm
Instantiation ltm = bigip.ltm

Example: Connect to the BIG-IP® and load the LTM® module

from f5.bigip import BigIP
bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
ltm = bigip.ltm

>>> print bigip
<f5.bigip.BigIP object at 0x8a29d0>

>>> print ltm
<f5.bigip.ltm.LTM object at 0x8c0b30>

3.1. User Guide 15

http://192.168.1.1/mgmt/tm/
http://192.168.1.1/mgmt/tm/ltm

F5 Python SDK Documentation, Release 0.1.3

Collection

Now that the higher-level organizing collections are loaded (in other words, we signed in to the BIG-IP® and accessed
the LTM® module), we can load the pool collection.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool
Kind tm:ltm:pool:poolcollectionstate
Type collection
Class f5.bigip.ltm.pool.Pools
Instantiation pools = bigip.ltm.pools

Example: Load the pools collection

from f5.bigip import BigIP

bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
pool_collection = bigip.ltm.pools
pools = bigip.ltm.pools.get_collection()

for pool in pools:
print pool.name

my_newpool
mypool
pool2
pool_1

In the above example, we instantiated the class f5.bigip.ltm.pool.Pools, then used the
f5.bigip.ltm.pool.Pools.get_collection() method to fetch the collection (in other words, a
list of the pool resources configured on the BIG-IP®).

Resource

In the SDK, we refer to a single instance of a configuration object as a resource. As shown in the previous sections,
we are able to access the pool resources on the BIG-IP® after loading the mgmt\tm\ltm organizing collections
and the pools collection.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/
Kind tm:ltm:pool:poolstate
Type resource
Class f5.bigip.ltm.pool.Pool
Instantiation pool = pools.pool.load(partition=’Common’, name=’mypool’)

Example: Load a pool resource

from f5.bigip import BigIP
pool = pools.pool.load(partition='Common', name='mypool')

In the example above, we instantiated the class f5.bigip.ltm.pool.Pool and loaded the
f5.bigip.ltm.pools.pool object. The object is a python representation of the BIG-IP® pool we loaded (in
this case, Common/mypool).

Tip: You can always see the representation of an object using the raw() method.

16 Chapter 3. Detailed Documentation

http://192.168.1.1/mgmt/tm/ltm/pool
http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/

F5 Python SDK Documentation, Release 0.1.3

>>> pool.raw
{
u'generation': 123,
u'minActiveMembers': 0,
u'ipTosToServer': u'pass-through',
u'loadBalancingMode': u'round-robin',
u'allowNat': u'yes',
u'queueDepthLimit': 0,
u'membersReference': {

u'isSubcollection': True,
u'link': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0'},
u'minUpMembers': 0, u'slowRampTime': 10,
u'minUpMembersAction': u'failover',
'_meta_data': {

'attribute_registry': {
'tm:ltm:pool:memberscollectionstate': <class 'f5.bigip.ltm

.pool.Members_s'>
},
'container': <f5.bigip.ltm.pool.Pools object at 0x835ef0>,
'uri': u'https://10.190.6.253/mgmt/tm/ltm/pool/~Common~mypool/',
'exclusive_attributes': [],
'read_only_attributes': [],
'allowed_lazy_attributes': [<class 'f5.bigip.ltm.pool.Members_s'>],
'required_refresh_parameters': set(['name']),
'required_json_kind': 'tm:ltm:pool:poolstate',
'bigip': <f5.bigip.BigIP object at 0x5826f0>,
'required_creation_parameters': set(['name']),
'creation_uri_frag': '',
'creation_uri_qargs': {u'ver': [u'11.6.0']}

},
u'minUpMembersChecking': u'disabled',
u'queueTimeLimit': 0,
u'linkQosToServer': u'pass-through',
u'queueOnConnectionLimit': u'disabled',
u'fullPath': u'/Common/mypool',
u'kind': u'tm:ltm:pool:poolstate',
u'name': u'mypool',
u'partition': u'Common',
u'allowSnat': u'yes',
u'ipTosToClient': u'pass-through',
u'reselectTries': 0,
u'selfLink': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0',
u'serviceDownAction': u'none',
u'ignorePersistedWeight': u'disabled',
u'linkQosToClient': u'pass-through'

}

Subcollection

A subcollection is a collection of resources that can only be accessed via its parent resource.

To continue our example: The f5.bigip.ltm.pool.Pool resource object contains
f5.bigip.ltm.pool.Member subcollection resource objects. These subcollection resources – the real-
servers that are attached to the pool, or ‘pool members’ – are part of the members_s subcollection. (Remember, we
have to add _s to the end of collection object names if the name of the resource object it contains already ends in s).

3.1. User Guide 17

F5 Python SDK Documentation, Release 0.1.3

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members
Kind tm:ltm:pool:members:memberscollectionstate
Type subcollection
Class f5.bigip.ltm.pool.Members_s
Instantiation members = pool.members_s

Example: Load the members_s collection

from f5.bigip import BigIP
members = pool.members_s.get_collection()
print members
[<f5.bigip.ltm.pool.Members object at 0x9d7ff0>, <f5.bigip.ltm.pool.Members object at 0x9d7830>]

Subcollection Resource

As explained in the previous section, a subcollection contains subcollection resources. These subcollection resources
can only be loaded after all of the parent objects (organizing collections, resource, and subcollection) have been loaded.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1
Kind tm:ltm:pool:members:membersstate
Type subcollection resource
Class f5.bigip.ltm.pool.Members
Instantia-
tion

members = pool.members_s.members.load(partition=’Common’,
name=’member1:<port>’)

Example: Load member objects

from f5.bigip import BigIP
member = members_s.members.load(partition='Common', name='m1')
print member
<f5.bigip.ltm.pool.Members object at 0x9fd530>

Coding Example

3.1.4 Coding Example

18 Chapter 3. Detailed Documentation

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members
http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1

F5 Python SDK Documentation, Release 0.1.3

Managing LTM Pools and Members via the F5 SDK

from f5.bigip import BigIP

Connect to the BigIP and configure the basic objects
bigip = BigIP('10.190.6.253', 'admin', 'default')
ltm = bigip.ltm
pools = bigip.ltm.pools.get_collection()
pool = bigip.ltm.pools.pool

Define a pool object and load an existing pool
pool_obj = bigip.ltm.pools.pool
pool_1 = pool_obj.load(partition='Common', name='mypool')

We can also skip creating the object and load the pool directly
pool_2 = bigip.ltm.pools.pool.load(partition='Common', name='mypool')

Print the object
print pool_1.raw

Make sure 1 and 2 have the same names and generation
assert pool_1.name == pool_2.name
assert pool_1.generation == pool_2.generation

Update the description
pool_1.description = "This is my pool"
pool_1.update()

Check the updated description
print pool_1.description

Since we haven't refreshed pool_2 it shouldn't match pool_1 any more
assert pool_1.generation > pool_2.generation

Refresh pool_2 and check that is now equal
pool_2.refresh()
assert pool_1.generation == pool_2.generation

print pool_1.generation
print pool_2.generation

Create members on pool_1

members = pool_1.members_s.get_collection()
member = pool_1.members_s.members

m1 = pool_1.members_s.members.create(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.create(partition='Common', name='m2:80')

load the pool members
m1 = pool_1.members_s.members.load(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.load(partition='Common', name='m2:80')

Get all of the pool members for pool_1 and print their names

for member in members:
print member.name

Delete our pool member m1
m1.delete()

Make sure it is gone
if pool_1.members_s.members.exists(partition='Common', name='m1:80'):

raise Exception("Object should have been deleted")

We are done with this pool so remove it from BIG-IP®
pool_1.delete()

Make sure it is gone

if bigip.ltm.pools.pool.exists(partition='Common', name='mypool'):
raise Exception("Object should have been deleted")

3.1. User Guide 19

F5 Python SDK Documentation, Release 0.1.3

3.1.5 Further Reading

• F5 SDK API Docs

• F5 iControl REST DevCentral Site

• F5 iControl REST API Reference (PDF)

• ‘F5 iControl REST API Guide (PDF) <https://devcentral.f5

.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160?download=true>‘_

3.2 Developer Guide

COMING SOON

3.3 f5

3.3.1 f5 package

f5.bigip

f5.bigip module

Classes and functions for configuring BIG-IP

cm BIG-IP® cluster module
ltm BIG-IP® Local Traffic Manager™ (LTM®) module.
net BIG-IP® net module
shared BIG-IP® Shared (shared) module
sys BIG-IP® System (sys) module

Organizing Collection Modules

resource.ResourceBase(container) Base class for all BIG-IP® iControl REST API endpoints.
resource.OrganizingCollection(bigip) Base class for objects that collect resources under them.
resource.Collection(container) Base class for objects that collect a list of Resources
resource.Resource(container) Base class to represent a Configurable Resource on the device.
resource.PathElement(container) Base class to represent a URI path element that does not contain data.

Resource Base Classes

resource.KindTypeMismatch Raise this when server JSON keys are incorrect for the Resource type.
resource.DeviceProvidesIncompatibleKey Raise this when server JSON keys are incompatible with Python.
resource.InvalidResource Raise this when a caller tries to invoke an unsupported CRUDL op.
resource.MissingRequiredCreationParameter Various values MUST be provided to create different Resources.

Continued on next page

20 Chapter 3. Detailed Documentation

https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx
https://devcentral.f5.com/d/icontrol-rest-api-reference-version-120?download=true
https://devcentral.f5

F5 Python SDK Documentation, Release 0.1.3

Table 3.3 – continued from previous page
resource.MissingRequiredReadParameter Various values MUST be provided to refresh some Resources.
resource.UnregisteredKind The returned server JSON kind key wasn’t expected by this Resource.
resource.GenerationMismatch The server reported BIG-IP® is not the expacted value.
resource.InvalidForceType Must be of type bool.
resource.URICreationCollision self._meta_data[’uri’] can only be assigned once. In create or load.
resource.UnsupportedOperation Object does not support the method that was called.

Resource Exceptions

mixins.ToDictMixin Convert an object’s attributes to a dictionary
mixins.LazyAttributesMixin
mixins.ExclusiveAttributesMixin Overrides __setattr__ to remove exclusive attrs from the object.
mixins.UnnamedResourceMixin This makes a resource object work if there is no name.
mixins.LazyAttributesRequired Raised when a object accesses a lazy attribute that is not listed

Mixins
class f5.bigip.BigIP(hostname, username, password, **kwargs)

Bases: f5.bigip.resource.OrganizingCollection

An interface to a single BIG-IP

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

f5.bigip.cm

3.3. f5 21

F5 Python SDK Documentation, Release 0.1.3

Module Contents BIG-IP® cluster module

REST URI http://localhost/mgmt/tm/cm/

GUI Path Device Management

REST Kind tm:cm:*

device BIG-IP® cluster device submodule
device_group BIG-IP® cluster device-group submodule
traffic_group BIG-IP® cluster traffic-group submodule

Submodule List
class f5.bigip.cm.Cm(bigip)

Bases: f5.bigip.resource.OrganizingCollection

BIG-IP® Cluster Organizing Collection.

sync(device_group_name)
Sync the configuration of the device-group.

Execute the run command via the iControl REST session with the config-sync to group device-group
options. Any exceptions triggered by the POST to the iControl REST server are raised back to the caller.

Parameters device_group_name (str) – Name of the device group to sync.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

Submodules

22 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

device BIG-IP® cluster device submodule

REST URI http://localhost/mgmt/tm/cm/device/

GUI Path Device Management --> Devices

REST Kind tm:cm:device:*

class f5.bigip.cm.device.Devices(cm)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster devices collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device.Device(device_s)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster device object.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 23

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

24 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

device_group BIG-IP® cluster device-group submodule

REST URI http://localhost/mgmt/tm/cm/device-group

GUI Path Device Management --> Device Groups

REST Kind tm:cm:device-group:*

class f5.bigip.cm.device_group.Device_Groups(cm)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster device-groups collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

3.3. f5 25

F5 Python SDK Documentation, Release 0.1.3

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device_group.Device_Group(device_groups)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster device-group resource

sync()
Sync the configuration of the device-group

Executes the containing object’s cm sync() method to sync the configuration of the device-group.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

26 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.cm.device_group.Devices_s(device_group)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster devices-group devices subcollection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 27

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device_group.Devices(devices_s)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster devices-group devices subcollection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

28 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

traffic_group BIG-IP® cluster traffic-group submodule

REST URI http://localhost/mgmt/tm/cm/traffic-group

3.3. f5 29

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

GUI Path Device Management --> Traffic Groups

REST Kind tm:cm:traffic-group:*

class f5.bigip.cm.traffic_group.Traffic_Groups(cm)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster traffic-group collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.traffic_group.Traffic_Group(traffic_groups)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster traffic-group resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

30 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 31

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

f5.bigip.ltm

Module Contents BIG-IP® Local Traffic Manager™ (LTM®) module.

REST URI http://localhost/mgmt/tm/ltm/

GUI Path Local Traffic

REST Kind

tm:ltm:*

monitor BIG-IP® LTM monitor submodule.
nat BIG-IP® Local Traffic Manager (LTM) Nat module.
node BIG-IP® Local Traffic Manager (LTM) node module.
policy BIG-IP® Local Traffic Manager (LTM) policy module.
pool BIG-IP® Local Traffic Manager™ (LTM®) pool module.
rule BIG-IP® Local Traffic Manager (LTM) rule module.
snat BIG-IP® Local Traffic Manager (LTM) Snat module.
snatpool BIG-IP Local Traffic Manager (LTM) SNAT pool module.
snat_translation BIG-IP Local Traffic Manager (LTM) SNAT Translation module.
ssl This module provides some more Pythonic support for SSL.
virtual BIG-IP® Local Traffic Manager (LTM) virtual module.
virtual_address Directory: ltm module: virtual-address.

class f5.bigip.ltm.Ltm(bigip)
Bases: f5.bigip.resource.OrganizingCollection

BIG-IP® Local Traffic Manager (LTM) organizing collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

32 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

Submodules

monitor BIG-IP® LTM monitor submodule.

REST URI http://localhost/mgmt/tm/ltm/monitors/

GUI Path Local Traffic --> Monitors

REST Kind tm:ltm:monitors*

Https(monitor) BIG-IP® Http monitor collection.
Http(https) BIG-IP® Http monitor resource.
Https_s(monitor) BIG-IP® Https monitor collection.
HttpS(https_s) BIG-IP® Https monitor resource.
Diameters(monitor) BIG-IP® diameter monitor collection.
Diameter(diameters) BIG-IP® diameter monitor resource.
Dns_s(monitor) BIG-IP® Dns monitor collection.
Dns(dns_s) BIG-IP® Dns monitor resource.
Externals(monitor) BIG-IP® external monitor collection.
External(externals) BIG-IP® external monitor resrouce.
Firepass_s(monitor) BIG-IP® Fire Pass monitor collection.
Firepass(firepass_s) BIG-IP® external monitor resource.
Ftps(monitor) BIG-IP® Ftp monitor collection.
Ftp(ftps) BIG-IP® Ftp monitor resource.
Gateway_Icmps(monitor) BIG-IP® Gateway Icmp monitor collection.
Gateway_Icmp(gateway_icmps) BIG-IP® Gateway Icmp monitor resource.
Icmps(monitor) BIG-IP® Icmp monitor collection.
Icmp(icmps) BIG-IP® Icmp monitor resource.
Imaps(monitor) BIG-IP® Imap monitor collection.
Imap(imaps) BIG-IP® Imap monitor resource.
Inbands(monitor) BIG-IP® in band monitor collection.
Inband(inbands) BIG-IP® in band monitor resource.
Ldaps(monitor) BIG-IP® Ldap monitor collection.
Ldap(ldaps) BIG-IP® Ldap monitor resource.
Module_Scores(monitor) BIG-IP® module scores monitor collection.

Continued on next page

3.3. f5 33

F5 Python SDK Documentation, Release 0.1.3

Table 3.7 – continued from previous page
Module_Score(gateway_icmps) BIG-IP® module scores monitor resource.
Mssqls(monitor) BIG-IP® Mssql monitor collection.
Mssql(mssqls) BIG-IP® Mssql monitor resource.
Mysqls(monitor) BIG-IP® MySQL monitor collection.
Mysql(mysqls) BIG-IP® MySQL monitor resource.
Nntps(monitor) BIG-IP® Nntps monitor collection.
Nntp(nntps) BIG-IP® Nntps monitor resource.
Nones(monitor) BIG-IP® None monitor collection.
NONE(nones) BIG-IP® None monitor resource.
Oracles(monitor) BIG-IP® Oracle monitor collection.
Oracle(oracles) BIG-IP® Oracle monitor resource.
Pop3s(monitor) BIG-IP® Pop3 monitor collection.
Pop3(pop3s) BIG-IP® Pop3 monitor resource.
Postgresqls(monitor) BIG-IP® PostGRES SQL monitor collection.
Postgresql(postgresqls) BIG-IP® PostGRES SQL monitor resource.
Radius_s(monitor) BIG-IP® radius monitor collection.
Radius(radius_s) BIG-IP® radius monitor resource.
Radius_Accountings(monitor) BIG-IP® radius accounting monitor collection.
Radius_Accounting(radius_accountings) BIG-IP® radius accounting monitor resource.
Real_Servers(monitor) BIG-IP® real-server monitor collection.
Real_Server(real_servers) BIG-IP® real-server monitor resource.
Rpcs(monitor) BIG-IP® Rpc monitor collection.
Rpc(rpcs) BIG-IP® Rpc monitor resource.
Sasps(monitor) BIG-IP® Sasp monitor collection.
Sasp(sasps) BIG-IP® Sasp monitor resource.
Scripteds(monitor) BIG-IP® scripted monitor collection.
Scripted(scripteds) BIG-IP® scripted monitor resource.
Sips(monitor) BIG-IP® Sip monitor collection.
Sip(sips) BIG-IP® Sip monitor resource.
Smbs(monitor) BIG-IP® Smb monitor collection.
Smb(smbs) BIG-IP® Smb monitor resource.
Smtps(monitor) BIG-IP® Smtp monitor collection.
Smtp(smtps) BIG-IP® Smtp monitor resource.
Snmp_Dcas(monitor) BIG-IP® SNMP DCA monitor collection.
Snmp_Dca(snmp_dcas) BIG-IP® SNMP DCA monitor resource.
Snmp_Dca_Bases(monitor) BIG-IP® SNMP DCA bases monitor collection.
Snmp_Dca_Base(snmp_dca_bases) BIG-IP® SNMP DCA monitor resource.
Soaps(monitor) BIG-IP® Soap monitor collection.
Soap(soaps) BIG-IP® Soap monitor resource.
Tcps(monitor) BIG-IP® Tcp monitor collection.
Tcp(tcps) BIG-IP® Tcp monitor resource.
Tcp_Echos(monitor) BIG-IP® Tcp echo monitor collection.
Tcp_Echo(tcp_echos) BIG-IP® Tcp echo monitor resource.
Tcp_Half_Opens(monitor) BIG-IP® Tcp half open monitor collection.
Tcp_Half_Open(tcp_half_opens) BIG-IP® Tcp half open monitor resource.
Udps(monitor) BIG-IP® Udp monitor collection.
Udp(udps) BIG-IP® Udp monitor resource.
Virtual_Locations(monitor) BIG-IP® virtual-locations monitor collection.
Virtual_Location(virtual_locations) BIG-IP® virtual-locations monitor resource.
Waps(monitor) BIG-IP® Wap monitor collection.

Continued on next page

34 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Table 3.7 – continued from previous page
Wap(waps) BIG-IP® Wap monitor resource.
Wmis(monitor) BIG-IP® Wmi monitor collection.
Wmi(wmis) BIG-IP® Wmi monitor resource.

Monitor Collections and Resources
class f5.bigip.ltm.monitor.Https(monitor)

Bases: f5.bigip.resource.Collection

BIG-IP® Http monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.monitor.Http(https)

Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Http monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 35

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

36 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Https_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Https monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 37

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.HttpS(https_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Https monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

38 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Diameters(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® diameter monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 39

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Diameter(diameters)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® diameter monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

40 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Dns_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Dns monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 41

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Dns(dns_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Dns monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

42 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Externals(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® external monitor collection.

3.3. f5 43

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.External(externals)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® external monitor resrouce.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

44 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 45

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Firepass_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Fire Pass monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Firepass(firepass_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® external monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

46 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 47

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Ftps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Ftp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

48 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Ftp(ftps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Ftp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 49

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Gateway_Icmps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Gateway Icmp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

50 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Gateway_Icmp(gateway_icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Gateway Icmp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 51

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Icmps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Icmp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

52 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Icmp(icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Icmp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 53

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Imaps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Imap monitor collection.

54 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Imap(imaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Imap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

3.3. f5 55

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

56 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Inbands(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® in band monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Inband(inbands)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® in band monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 57

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

58 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Ldaps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Ldap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 59

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Ldap(ldaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Ldap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

60 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Module_Scores(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® module scores monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 61

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Module_Score(gateway_icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® module scores monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

62 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Mysqls(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® MySQL monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 63

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Mysql(mysqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® MySQL monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

64 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Mssqls(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Mssql monitor collection.

3.3. f5 65

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Mssql(mssqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Mssql monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

66 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 67

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Nntps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Nntps monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Nntp(nntps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Nntps monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

68 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 69

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Nones(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® None monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

70 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.NONE(nones)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® None monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 71

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Oracles(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Oracle monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

72 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Oracle(oracles)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Oracle monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 73

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Pop3s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Pop3 monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

74 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Pop3(pop3s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Pop3 monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 75

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Postgresqls(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® PostGRES SQL monitor collection.

76 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Postgresql(postgresqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® PostGRES SQL monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

3.3. f5 77

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

78 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Radius_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® radius monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Radius(radius_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® radius monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 79

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

80 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Radius_Accountings(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® radius accounting monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 81

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Radius_Accounting(radius_accountings)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® radius accounting monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

82 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Real_Servers(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® real-server monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 83

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Real_Server(real_servers)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® real-server monitor resource.

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•tmCommand attribute removed prior to PUT

•agent attribute removed prior to PUT

•post attribute removed prior to PUT

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

84 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.ltm.monitor.Rpcs(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Rpc monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 85

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Rpc(rpcs)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Rpc monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

86 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Sasps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Sasp monitor collection.

3.3. f5 87

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Sasp(sasps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Sasp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

88 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 89

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Scripteds(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® scripted monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Scripted(scripteds)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® scripted monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

90 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 91

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Sips(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Sip monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

92 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Sip(sips)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Sip monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 93

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Smbs(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Smb monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

94 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Smb(smbs)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Smb monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 95

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Smtps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Smtp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

96 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Smtp(smtps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Smtp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 97

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Snmp_Dcas(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® SNMP DCA monitor collection.

98 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Snmp_Dca(snmp_dcas)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® SNMP DCA monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

3.3. f5 99

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

100 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Snmp_Dca_Bases(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® SNMP DCA bases monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Snmp_Dca_Base(snmp_dca_bases)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® SNMP DCA monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 101

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

102 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Soaps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Soap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 103

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Soap(soaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Soap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

104 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Tcp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 105

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp(tcps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Tcp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

106 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcp_Echos(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Tcp echo monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 107

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp_Echo(tcp_echos)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Tcp echo monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

108 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcp_Half_Opens(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Tcp half open monitor collection.

3.3. f5 109

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp_Half_Open(tcp_half_opens)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Tcp half open monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

110 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 111

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Udps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Udp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Udp(udps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Udp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

112 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 113

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Virtual_Locations(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® virtual-locations monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

114 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Virtual_Location(virtual_locations)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® virtual-locations monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 115

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Waps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Wap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

116 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Wap(waps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Wap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 117

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Wmis(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Wmi monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

118 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Wmi(wmis)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Wmi monitor resource.

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•agent attribute removed prior to PUT

•post attribute removed prior to PUT

•method attribute removed prior to PUT

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

3.3. f5 119

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

120 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

nat BIG-IP® Local Traffic Manager (LTM) Nat module.

REST URI http://localhost/mgmt/tm/ltm/nat

GUI Path Local Traffic --> Nat

REST Kind tm:ltm:nat:*

Nats(ltm) BIG-IP® LTM Nat collection object
Nat(nat_s) BIG-IP® LTM Nat collection resource

node Collections and Resources
class f5.bigip.ltm.nat.Nats(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM Nat collection object

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

3.3. f5 121

F5 Python SDK Documentation, Release 0.1.3

class f5.bigip.ltm.nat.Nat(nat_s)
Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® LTM Nat collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Note: If you are creating with ‘‘inheritedTrafficGroup‘ set to False you just also have a trafficGroup.

Parameters kwargs – All the key-values needed to create the resource

Returns self - A python object that represents the object’s configuration and state on the BIG-
IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

122 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

node BIG-IP® Local Traffic Manager (LTM) node module.

REST URI http://localhost/mgmt/tm/ltm/node

GUI Path Local Traffic --> Nodes

REST Kind tm:ltm:node:*

Nodes(ltm) BIG-IP® LTM node collection
Node(nodes) BIG-IP® LTM node resource

node Collections and Resources
class f5.bigip.ltm.node.Nodes(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM node collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

3.3. f5 123

F5 Python SDK Documentation, Release 0.1.3

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.node.Node(nodes)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM node resource

update(**kwargs)
Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•If fqdn is in the kwargs or set as an attribute, removes the autopopulate and addressFamily
keys from it if there.

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

124 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

policy BIG-IP® Local Traffic Manager (LTM) policy module.

REST URI http://localhost/mgmt/tm/ltm/policy

GUI Path Local Traffic --> policy

REST Kind tm:ltm:policy:*

Policys(ltm) BIG-IP® LTM policy collection.
Policy(policy_s) BIG-IP® LTM policy resource.
Rules_s(policy) BIG-IP® LTM policy rules sub-collection.
Rules(rules_s) BIG-IP® LTM policy rules sub-collection resource.
Actions_s(rules) BIG-IP® LTM policy actions sub-collection.
Actions(actions_s) BIG-IP® LTM policy actions sub-collection resource.
Conditions_s(rules) BIG-IP® LTM policy conditions sub-collection.
Conditions(conditions_s) BIG-IP® LTM policy conditions sub-collection resource.

3.3. f5 125

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Policy Collections and Resources
class f5.bigip.ltm.policy.Policys(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.policy.Policy(policy_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

126 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 127

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Rules_s(policy)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy rules sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

128 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

class f5.bigip.ltm.policy.Rules(rules_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy rules sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

3.3. f5 129

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Actions_s(rules)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy actions sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

130 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Actions(actions_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy actions sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

3.3. f5 131

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Conditions_s(rules)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy conditions sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

132 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Conditions(conditions_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy conditions sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

3.3. f5 133

F5 Python SDK Documentation, Release 0.1.3

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

pool BIG-IP® Local Traffic Manager™ (LTM®) pool module.

REST URI http://localhost/mgmt/tm/ltm/pool

GUI Path Local Traffic --> Pools

REST Kind tm:ltm:pools:*

134 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Pools(ltm) BIG-IP® LTM pool collection
Pool(pool_s) BIG-IP® LTM pool resource
Members_s(pool) BIG-IP® LTM pool members sub-collection
Member

Pool Collections and Resources
class f5.bigip.ltm.pool.Pools(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM pool collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.pool.Pool(pool_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM pool resource

3.3. f5 135

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

136 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.pool.Members_s(pool)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM pool members sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

3.3. f5 137

F5 Python SDK Documentation, Release 0.1.3

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.pool.Members(members_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM pool members sub-collection resource

update(**kwargs)
Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•If fqdn is in the kwargs or set as an attribute, removes the autopopulate and addressFamily
keys from it if there.

Parameters

• state= – state value or None required.

• kwargs – keys and associated values to alter on the device

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it must then check the contents of the json contained in the response, this is because
the “pool/... /members” resource provided by the server returns a status code of 200 for queries that do not
correspond to an existing configuration. Therefore this method checks for the presence of the “address”
key in the response JSON... of course, this means that exists depends on an unexpected idiosyncrancy of
the server, and might break with version updates, edge cases, or other unpredictable changes.

Parameters kwargs – Keyword arguments required to get objects, “partition”

and “name” are required

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

138 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

rule BIG-IP® Local Traffic Manager (LTM) rule module.

REST URI http://localhost/mgmt/tm/ltm/rule

GUI Path Local Traffic --> Rules

REST Kind tm:ltm:rule:*

Rules(ltm) BIG-IP® LTM rule collection
Rule(rule_s) BIG-IP® LTM rule resource

Rule Collections and Resources
class f5.bigip.ltm.rule.Rules(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM rule collection

3.3. f5 139

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.rule.Rule(rule_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM rule resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

140 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

3.3. f5 141

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snat BIG-IP® Local Traffic Manager (LTM) Snat module.

REST URI http://localhost/mgmt/tm/ltm/snat

GUI Path Local Traffic --> Snat

REST Kind tm:ltm:snat:*

Snats(ltm) BIG-IP® LTM Snat collection
Snat(snat_s) BIG-IP® LTM Snat resource

Snat Collections and Resources
class f5.bigip.ltm.snat.Snats(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM Snat collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

142 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snat.Snat(snat_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM Snat resource

create(**kwargs)
Call this to create a new snat on the BIG-IP®.

Uses HTTP POST to ‘containing’ URI to create a service associated with a new URI on the device.

Note this is the one of two fundamental Resource operations that returns a different uri (in the returned
object) than the uri the operation was called on. The returned uri can be accessed as Object.selfLink, the
actual uri used by REST operations on the object is Object._meta_data[’uri’]. The _meta_data[’uri’] is the
same as Object.selfLink with the substring ‘localhost’ replaced with the value of Object._meta_data[’BIG-
IP’]._meta_data[’hostname’], and without query args, or hash fragments.

The following is done prior to the POST * Ensures that one of automap, snatpool, translastion

parameter is passed in.

Parameters kwargs – All the key-values needed to create the resource

Returns An instance of the Python object that represents the device’s

uri-published resource. The uri of the resource is part of the object’s _meta_data.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

3.3. f5 143

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snatpool BIG-IP Local Traffic Manager (LTM) SNAT pool module.

REST URI https://localhost/mgmt/tm/ltm/snatpool?ver=11.6.0

GUI Path Local Traffic --> Address Translation --> SNAT Pool List

REST Kind tm:ltm:snatpool:*

Snatpools(ltm) BIG-IP SNAT pool collection.
Snatpool(Snatpools) BIG-IP SNAT Pool resource.

Snat Collections and Resources
class f5.bigip.ltm.snatpool.Snatpools(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP SNAT pool collection.

create(**kwargs)

144 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snatpool.Snatpool(Snatpools)

Bases: f5.bigip.resource.Resource

BIG-IP SNAT Pool resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

3.3. f5 145

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

146 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snat_translation BIG-IP Local Traffic Manager (LTM) SNAT Translation module.

REST URI https://localhost/mgmt/tm/ltm/snat-translation?ver=11.6.0

GUI Path Local Traffic --> Address Translation --> Address Translation List

REST Kind tm:ltm:snat-translation:*

Snat_Translations(ltm) BIG-IP SNAT Translation collection.
Snat_Translation(Snat_Translations) BIG-IP SNAT Translation resource.

Snat Collections and Resources
class f5.bigip.ltm.snat_translation.Snat_Translations(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP SNAT Translation collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

3.3. f5 147

F5 Python SDK Documentation, Release 0.1.3

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snat_translation.Snat_Translation(Snat_Translations)

Bases: f5.bigip.mixins.ExclusiveAttributesMixin, f5.bigip.resource.Resource

BIG-IP SNAT Translation resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

148 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

ssl

virtual BIG-IP® Local Traffic Manager (LTM) virtual module.

REST URI http://localhost/mgmt/tm/ltm/virtual

GUI Path Local Traffic --> Virtual Servers

REST Kind tm:ltm:virtual:*

Virtuals(ltm) BIG-IP® LTM virtual collection
Virtual(virtual_s) BIG-IP® LTM virtual resource

Virtual Collections and Resources
class f5.bigip.ltm.virtual.Virtuals(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM virtual collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)

3.3. f5 149

F5 Python SDK Documentation, Release 0.1.3

Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.virtual.Virtual(virtual_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM virtual resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

150 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 151

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

class f5.bigip.ltm.virtual.Profiles(Profiles_s)
Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

152 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.virtual.Profiles_s(virtual)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

3.3. f5 153

F5 Python SDK Documentation, Release 0.1.3

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

virtual_address Directory: ltm module: virtual-address.

REST URI https://localhost/mgmt/tm/ltm/virtual-address?ver=11.6.0

GUI Path Local Traffic Manager --> Virtual Servers --> Virtual Address List

REST Kind tm:ltm:virtual-address:*

Virtual_Address_s(ltm) BIG-IP LTM virtual address collection.
Virtual_Address(Virtual_Address_s) BIG-IP LTM virtual address resource.

Virtual Address Collections and Resources
class f5.bigip.ltm.virtual_address.Virtual_Address_s(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP LTM virtual address collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

154 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.virtual_address.Virtual_Address(Virtual_Address_s)

Bases: f5.bigip.resource.Resource

BIG-IP LTM virtual address resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

3.3. f5 155

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

f5.bigip.net

Module Conents BIG-IP® net module

REST URI http://localhost/mgmt/tm/net/

GUI Path Network

REST Kind tm:net:*

arp BIG-IP® Network ARP module.
fdb Directory: net module: fdb.
interface BIG-IP® Network interface module.
route BIG-IP® Network route module.
route_domain Directory: net module: route-domain.
selfip BIG-IP® Network self-ip module.

Continued on next page

156 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Table 3.18 – continued from previous page
tunnels BIG-IP® Network tunnels module.
vlan BIG-IP® Network vlan module.

Submodule List

Submodules

arp BIG-IP® Network ARP module.

REST URI http://localhost/mgmt/tm/net/arp

GUI Path Network --> ARP

REST Kind tm:net:arp:*

Arps(net) BIG-IP® network ARP collection
Arp(arp_s) BIG-IP® network ARP resource

ARP Collections and Resources
class f5.bigip.net.arp.Arps(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network ARP collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

3.3. f5 157

F5 Python SDK Documentation, Release 0.1.3

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.arp.Arp(arp_s)

Bases: f5.bigip.resource.Resource

BIG-IP® network ARP resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

158 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

interface BIG-IP® Network interface module.

REST URI http://localhost/mgmt/tm/net/interface

GUI Path Network --> Interfaces

REST Kind tm:net:interface:*

Interfaces(net) BIG-IP® network interface collection
Interface(interface_s) BIG-IP® network interface collection

Interface Collections and Resources
class f5.bigip.net.interface.Interfaces(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network interface collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)

3.3. f5 159

F5 Python SDK Documentation, Release 0.1.3

Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.interface.Interface(interface_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® network interface collection

create(**kwargs)
Create is not supported for interfaces.

Raises UnsupportedOperation

delete()
Delete is not supported for interfaces.

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

160 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

route BIG-IP® Network route module.

REST URI http://localhost/mgmt/tm/net/route

GUI Path Network --> Routes

REST Kind tm:net:route:*

Routes(net) BIG-IP® network route collection
Route(route_s) BIG-IP® network route resource

Route Collections and Resources
class f5.bigip.net.route.Routes(net)

3.3. f5 161

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Bases: f5.bigip.resource.Collection

BIG-IP® network route collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.route.Route(route_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® network route resource

create(**kwargs)
Create a Route on the BIG-IP® and the associated python object.

One of the following gateways is required when creating the route objects: blackhole, gw,
tmInterface, pool.

Params kwargs keyword arguments passed in from create call

Raises KindTypeMismatch

Raises MissingRequiredCreationParameter

162 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Raises HTTPError

Returns Python Route object

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

3.3. f5 163

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

route_domain Directory: net module: route-domain.

REST URI https://localhost/mgmt/tm/net/route-domain?ver=11.6.0

GUI Path XXX

REST Kind tm:net:route-domain:*

Route_Domains(net) A Collection concrete subclass docstring.
Route_Domain(Route_Domains) A Resource concrete subclass.

Route Collections and Resources
class f5.bigip.net.route_domain.Route_Domains(net)

Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

164 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.route_domain.Route_Domain(Route_Domains)

Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

3.3. f5 165

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

selfip BIG-IP® Network self-ip module.

Note: Self IPs path does not match their kind or URI because the string self causes problems in Python because it
is a reserved word.

REST URI http://localhost/mgmt/tm/net/self

GUI Path Network --> Self IPs

REST Kind tm:net:self:*

Selfips(net) BIG-IP® network Self-IP collection
Selfip(selfip_s) BIG-IP® Self-IP resource

Selfip Collections and Resources
class f5.bigip.net.selfip.Selfips(net)

Bases: f5.bigip.resource.Collection

166 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

BIG-IP® network Self-IP collection

Note: The objects in the collection are actually called ‘self’ in iControlREST, but obviously this will cause
problems in Python so we changed its name to Selfip.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.selfip.Selfip(selfip_s)

Bases: f5.bigip.resource.Resource

BIG-IP® Self-IP resource

Use this object to create, refresh, update, delete, and load self ip configuration on the BIG-IP®. This requires
that a VLAN object be present on the system and that object’s :attrib:‘fullPath‘ be used as the VLAN name.

The address that is used for create is a <ipaddress>/<netmask>. For example 192.168.1.1/32.

3.3. f5 167

F5 Python SDK Documentation, Release 0.1.3

Note: The object is actually called self in iControlREST, but obviously this will cause problems in Python
so we changed its name to Selfip.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

168 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

tunnels BIG-IP® Network tunnels module.

REST URI http://localhost/mgmt/tm/net/tunnels

GUI Path Network --> tunnels

REST Kind tm:net:tunnels:*

Tunnels_s(net) BIG-IP® network tunnels collection
Tunnels(tunnels_s) BIG-IP® network tunnels resource (collection for GRE, Tunnel, VXLANs
Tunnel(tunnels) BIG-IP® tunnels tunnel resource
Gres(tunnels_s) BIG-IP® tunnels GRE sub-collection
Gre(gres) BIG-IP® tunnels GRE sub-collection resource
Vxlans(tunnels_s) BIG-IP® tunnels VXLAN sub-collection
Vxlan(vxlans) BIG-IP® tunnels VXLAN sub-collection resource

Tunnels Collections and Resources
class f5.bigip.net.tunnels.Tunnels_s(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network tunnels collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

3.3. f5 169

F5 Python SDK Documentation, Release 0.1.3

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.tunnels.Tunnels(tunnels_s)

Bases: f5.bigip.resource.Collection

BIG-IP® network tunnels resource (collection for GRE, Tunnel, VXLANs

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

170 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Tunnel(tunnels)
Bases: f5.bigip.resource.Resource

BIG-IP® tunnels tunnel resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 171

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.tunnels.Gres(tunnels_s)
Bases: f5.bigip.resource.Collection

BIG-IP® tunnels GRE sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

172 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Gre(gres)
Bases: f5.bigip.resource.Resource

BIG-IP® tunnels GRE sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 173

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.tunnels.Vxlans(tunnels_s)
Bases: f5.bigip.resource.Collection

BIG-IP® tunnels VXLAN sub-collection

174 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Vxlan(vxlans)
Bases: f5.bigip.resource.Resource

BIG-IP® tunnels VXLAN sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

3.3. f5 175

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

176 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

vlan BIG-IP® Network vlan module.

REST URI http://localhost/mgmt/tm/net/vlan

GUI Path Network --> Vlans

REST Kind tm:net:vlan:*

Vlans(net) BIG-IP® network Vlan collection.
Vlan(vlan_s) BIG-IP® network Vlan resource.
Interfaces_s(vlan) BIG-IP® network Vlan interface collection.
Interfaces(interfaces_s) BIG-IP® network Vlan interface resource.

Vlan Collections and Resources
class f5.bigip.net.vlan.Vlans(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network Vlan collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

3.3. f5 177

F5 Python SDK Documentation, Release 0.1.3

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.vlan.Vlan(vlan_s)

Bases: f5.bigip.resource.Resource

BIG-IP® network Vlan resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

178 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.vlan.Interfaces_s(vlan)
Bases: f5.bigip.resource.Collection

BIG-IP® network Vlan interface collection.

Note: Not to be confused with tm/mgmt/net/interface. This is object is actually called interfaces
with an s by the BIG-IP’s REST API.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

3.3. f5 179

F5 Python SDK Documentation, Release 0.1.3

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.vlan.Interfaces(interfaces_s)
Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® network Vlan interface resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

180 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

fdb Directory: net module: fdb.

REST URI https://localhost/mgmt/tm/net/fdb

GUI Path XXX

REST Kind tm:net:fdb:*

3.3. f5 181

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Fdbs(net) A Collection concrete subclass docstring.
Tunnel(Tunnels) A Resource concrete subclass.
Tunnels(fdb) A Collection concrete subclass docstring.
Vlans(fdb) A Collection concrete subclass docstring.

FDB Collections and Resources
class f5.bigip.net.fdb.Fdbs(net)

Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.fdb.Tunnel(Tunnels)

Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

182 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

3.3. f5 183

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.fdb.Tunnels(fdb)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

184 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.fdb.Vlans(fdb)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

f5.bigip.shared

3.3. f5 185

F5 Python SDK Documentation, Release 0.1.3

Module Contents BIG-IP® Shared (shared) module

REST URI http://localhost/mgmt/tm/shared/

GUI Path System

REST Kind N/A – HTTP GET returns an error

bigip_failover_state BIG-IP® shared failover state module
licensing BIG-IP® system failover module

Submodule List

Submodules

bigip_failover_state BIG-IP® shared failover state module

REST URI http://localhost/mgmt/tm/shared/bigip-failover-state

GUI Path N/A

REST Kind tm:shared:licensing:*

class f5.bigip.shared.bigip_failover_state.Bigip_Failover_State(shared)
Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® failover state information

Failover state objects only support the load() method because they cannot be modified via the API.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for BIG-IP® failover state.

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

186 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

licensing BIG-IP® system failover module

REST URI http://localhost/mgmt/tm/shared/license

GUI Path System --> License

REST Kind tm:shared:licensing:*

class f5.bigip.shared.licensing.Licensing(shared)
Bases: f5.bigip.resource.PathElement

BIG-IP® licensing stats and states.

Licensing objects themselves do not support any methods and are just containers for lower level objects.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.shared.licensing.Activation(licensing)
Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® license activation status

Activation state objects only support the load() method because they cannot be modified via the API.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for License Activation

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

3.3. f5 187

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.shared.licensing.Registration(licensing)
Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® license registration status

Registration state objects only support the load() method because they cannot be modified via the API.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for License Registration

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

188 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

f5.bigip.sys

Module Contents BIG-IP® System (sys) module

REST URI http://localhost/mgmt/tm/sys/

GUI Path System

REST Kind tm:sys:*

application BIG-IP® iApp (application) module
db BIG-IP® db module
failover BIG-IP® system failover module
folder BIG-IP® system folder (partition) module
global_settings BIG-IP® system global-settings module
ntp BIG-IP® system ntp module
performance BIG-IP® system peformance stats module.

Submodule List

Submodules

application BIG-IP® iApp (application) module

3.3. f5 189

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

REST URI http://localhost/mgmt/sys/application/

GUI Path iApps

REST Kind tm:sys:application:*

Applications(sys) BIG-IP® iApp collection.
Aplscripts(application) BIG-IP® iApp script collection.
Aplscript(apl_script_s) BIG-IP® iApp script resource.
Customstats(application) BIG-IP® iApp custom stats sub-collection.
Customstat(custom_stat_s) BIG-IP® iApp custom stats sub-collection resource.
Services(application) BIG-IP® iApp service sub-collection.
Service(service_s) BIG-IP® iApp service sub-collection resource
Templates(application) BIG-IP® iApp template sub-collection
Template(template_s) BIG-IP® iApp template sub-collection resource

Application Collections and Resources
class f5.bigip.sys.application.Applications(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® iApp collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

190 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.application.Aplscripts(application)

Bases: f5.bigip.resource.Collection

BIG-IP® iApp script collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Aplscript(apl_script_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp script resource.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 191

F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

192 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.application.Customstats(application)
Bases: f5.bigip.resource.Collection

BIG-IP® iApp custom stats sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 193

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Customstat(custom_stat_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp custom stats sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

194 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.application.Services(application)
Bases: f5.bigip.resource.Collection

BIG-IP® iApp service sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 195

F5 Python SDK Documentation, Release 0.1.3

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Service(service_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp service sub-collection resource

update(**kwargs)
Push local updates to the object on the device.

Params kwargs keyword arguments for accessing/modifying the object

Returns updated Python object

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Override of resource.Resource exists() to build proper URI unique to service resources.

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

196 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.sys.application.Templates(application)
Bases: f5.bigip.resource.Collection

BIG-IP® iApp template sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

3.3. f5 197

F5 Python SDK Documentation, Release 0.1.3

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Template(template_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp template sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

198 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

db BIG-IP® db module

REST URI http://localhost/mgmt/sys/db/

GUI Path N/A

REST Kind tm:sys:db:*

Dbs(sys) BIG-IP® db collection
Db(dbs) BIG-IP® db resource

3.3. f5 199

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

DB Collections and Resources
class f5.bigip.sys.db.Dbs(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® db collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.db.Db(dbs)

Bases: f5.bigip.resource.Resource

BIG-IP® db resource

Note: db objects are read-only.

create(**kwargs)
Create is not supported for db resources.

Raises UnsupportedOperation

200 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete is not supported for db resources.

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 201

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

failover BIG-IP® system failover module

REST URI http://localhost/mgmt/tm/sys/failover

GUI Path System --> Failover

REST Kind tm:sys:failover:*

Failover(sys) BIG-IP® Failover stats and state change.

Failover Resources
class f5.bigip.sys.failover.Failover(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® Failover stats and state change.

The failover object only supports load, update, and refresh because it is an unnamed resource.

To force the unit to standby call the update() method as follows:

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for Failover

Raises UnsupportedOperation

toggle_standby(**kwargs)
Toggle the standby status of a traffic group.

WARNING: This method which used POST obtains json keys from the device that are not available in the
response to a GET against the same URI.

Unique to refresh/GET: u”apiRawValues” u”selfLink” Unique to toggle_standby/POST: u”command”
u”standby” u”traffic-group”

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS

202 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

folder BIG-IP® system folder (partition) module

REST URI http://localhost/mgmt/tm/sys/folder

GUI Path System --> Users --> Partition List

REST Kind tm:sys:folder:*

Folders(sys) BIG-IP® system folder collection.
Folder(folder_s)

Folder Collections and Resources
class f5.bigip.sys.folder.Folders(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® system folder collection.

These are what we refer to as partition in the SDK.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

3.3. f5 203

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

global_settings BIG-IP® system global-settings module

REST URI http://localhost/mgmt/tm/sys/global-settings

GUI Path System --> Configuration --> Device

REST Kind tm:sys:global-settings:*

Global_Settings(sys) BIG-IP® system global-settings resource

Global_Settings Resources
class f5.bigip.sys.global_settings.Global_Settings(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® system global-settings resource

The global_settings object only supports load and update because it is an unnamed resource.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

204 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

ntp BIG-IP® system ntp module

REST URI http://localhost/mgmt/tm/sys/ntp

GUI Path System --> Configuration --> Device --> NTP

REST Kind tm:sys:ntp:*

Ntp(sys) BIG-IP® system NTP unnamed resource
Restricts(ntp) BIG-IP® system NTP restrict sub-collection
Restrict(restricts) BIG-IP® system NTP restrict sub-collection resource

NTP Resources and Subcollections
class f5.bigip.sys.ntp.Ntp(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® system NTP unnamed resource

This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

3.3. f5 205

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.ntp.Restricts(ntp)
Bases: f5.bigip.resource.Collection

BIG-IP® system NTP restrict sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

206 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.ntp.Restrict(restricts)
Bases: f5.bigip.resource.Resource

BIG-IP® system NTP restrict sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

3.3. f5 207

F5 Python SDK Documentation, Release 0.1.3

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

208 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

performance BIG-IP® system peformance stats module.

REST URI http://localhost/mgmt/tm/sys/performance

GUI Path System --> Users --> Partition List

REST Kind tm:sys:performance:*

Performance(sys) BIG-IP® system performace stats collection
All_Stats(performance) BIG-IP® system performace stats unnamed resource

Performance Resources and Subcollections
class f5.bigip.sys.performance.Performance(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® system performace stats collection

get_collection()
Performance collections are not proper BIG-IP® collection objects.

Raises UnsupportedOperation

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.performance.All_Stats(performance)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® system performace stats unnamed resource

3.3. f5 209

F5 Python SDK Documentation, Release 0.1.3

update(**kwargs)
Update is not supported for statistics.

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

resource module

This module provides classes that specify how RESTful resources are handled.

THE MOST IMPORTANT THING TO KNOW ABOUT THIS API IS THAT YOU CAN DIRECTLY INFER REST
URIs FROM PYTHON EXPRESSIONS, AND VICE VERSA.

Examples:

• Expression: bigip = BigIP(‘a’, ‘b’, ‘c’)

• URI Returned: https://a/mgmt/tm/

• Expression: bigip.ltm

• URI Returned: https://a/mgmt/tm/ltm/

210 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError
https://a/mgmt/tm/
https://a/mgmt/tm/ltm/

F5 Python SDK Documentation, Release 0.1.3

• Expression: pools1 = bigip.ltm.pools

• URI Returned: https://a/mgmt/tm/ltm/pool

• Expression: pool_a = pools1.create(partition=”Common”, name=”foo”)

• URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

There are different types of resources published by the BIG-IP® REST Server, they are represented by the classes in
this module.

We refer to a server-provided resource as a “service”. Thus far all URI referenced resources are “services” in this
sense.

We use methods named Create, Refresh, Update, Load, and Delete to manipulate BIG-IP® device services.

Methods:

• create – uses HTTP POST, creates a new resource and with its own URI on the device

• refresh – uses HTTP GET, obtains the state of a device resource, and sets the representing Python Resource
Object tracks device state via its attrs

• update – uses HTTP PUT, submits a new configuration to the device resource and sets the Resource attrs
to the state the device reports

• load – uses HTTP GET, obtains the state of an existing resource on the device and sets the Resource attrs to that
state

• delete – uses HTTP DELETE, removes the resource from the device, and sets self.__dict__ to {‘deleted’: True}

Available Classes:

• ResourceBase – only refresh is generally supported in all resource types, this class provides refresh. Re-
sourceBase objects are usually instantiated via setting lazy attributes. ResourceBase provides a constructor
to match its call in LazyAttributeMixin.__getattr__. The expected behavior is that all resource subclasses
depend on this constructor to correctly set their self._meta_data[’uri’]. All ResourceBase objects (except
BIG-IPs) have a container (BIG-IPs contain themselves). The container is the object the ResourceBase is
an attribute of.

• OrganizingCollection – These resources support lists of “reference” “links”. These are json blobs without
a Python class representation.

Example URI_path: /mgmt/tm/ltm/

• Collection – These resources support lists of ResourceBase Objects. Example URI_path:
/mgmt/tm/ltm/nat

• Resource – These resources are the only resources that support create, update, and delete operations.
Because they support HTTP post (via _create) they uniquely depend on 2 uri’s, a uri that supports the
creating post, and the returned uri of the newly created resource.

Example URI_path: /mgmt/tm/ltm/nat/~Common~testnat1

exception f5.bigip.resource.KindTypeMismatch
Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incorrect for the Resource type.

exception f5.bigip.resource.DeviceProvidesIncompatibleKey
Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incompatible with Python.

3.3. f5 211

https://a/mgmt/tm/ltm/pool
https://a/mgmt/tm/ltm/pool/~Common~foo

F5 Python SDK Documentation, Release 0.1.3

exception f5.bigip.resource.InvalidResource
Bases: f5.sdk_exception.F5SDKError

Raise this when a caller tries to invoke an unsupported CRUDL op.

All resources support refresh and raw. Only Resource‘s support load, create, update, and delete.

exception f5.bigip.resource.MissingRequiredCreationParameter
Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to create different Resources.

exception f5.bigip.resource.MissingRequiredReadParameter
Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to refresh some Resources.

exception f5.bigip.resource.UnregisteredKind
Bases: f5.sdk_exception.F5SDKError

The returned server JSON kind key wasn’t expected by this Resource.

exception f5.bigip.resource.GenerationMismatch
Bases: f5.sdk_exception.F5SDKError

The server reported BIG-IP® is not the expacted value.

exception f5.bigip.resource.InvalidForceType
Bases: exceptions.ValueError

Must be of type bool.

exception f5.bigip.resource.URICreationCollision
Bases: f5.sdk_exception.F5SDKError

self._meta_data[’uri’] can only be assigned once. In create or load.

exception f5.bigip.resource.UnsupportedOperation
Bases: f5.sdk_exception.F5SDKError

Object does not support the method that was called.

class f5.bigip.resource.PathElement(container)
Bases: f5.bigip.mixins.LazyAttributeMixin

Base class to represent a URI path element that does not contain data.

The BIG-IP® iControl REST API has URIs that are made up of path components that do not return data when
they are queried. This class represents those elements and does not support any of the CURDLE methods that
the other objects do.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.resource.ResourceBase(container)
Bases: f5.bigip.resource.PathElement, f5.bigip.mixins.ToDictMixin

Base class for all BIG-IP® iControl REST API endpoints.

The BIG-IP® is represented by an object that converts device-published uri’s into Python objects. Each uri
maps to a Python object. The mechanism for instantiating these objects is the __getattr__ Special Function in
the LazyAttributeMixin. When a registered attribute is dot referenced, on the device object (e.g. bigip.ltm
or simply bigip), an appropriate object is instantiated and attributed to the referencing object:

212 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

bigip.ltm = LTM(bigip)
bigip.ltm.nats
nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

This can be shortened to just the last line:

nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

Critically this enforces a convention relating device published uris to API objects, in a hierarchy similar to the
uri paths. I.E. the uri corresponding to a Nats object is mgmt/tm/ltm/nat/. If you query the BIG-IP’s uri
(e.g. print(bigip._meta_data[’uri’])), you’ll see that it ends in: /mgmt/tm/, if you query the ltm object’s uri
(e.g. print(bigip.ltm._meta_data[’uri’])) you’ll see it ends in /mgmt/tm/ltm/.

In general the objects build a required self._meta_data[’uri’] attribute by: 1. Inheriting this class. 2. calling
super(Subclass, self).__init__(container) 3. self.uri = self.container_uri[’uri’] + ‘/’ + self.__class__.__name__

The net result is a succinct mapping between uri’s and objects, that represents objects in a hierarchical relation-
ship similar to the device’s uri path hierarchy.

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.resource.OrganizingCollection(bigip)
Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect resources under them.

OrganizingCollection objects fulfill the following functions:

•represent a uri path fragment immediately ‘below’ /mgmt/tm

•provide a list of dictionaries that contain uri’s to other resources on the device.

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

3.3. f5 213

F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.resource.Collection(container)
Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect a list of Resources

The Collection Resource is responsible for providing a list of Python objects, where each object represents a
unique URI, the URI contains the URI of the Collection at the front of its path, and the ‘kind’ of the URI-
associated-JSON has been registered with the attribute registry of the Collection subclass.

Note: Any subclass of this base class must have s at the end of its name unless it ends in s then it must have
_s.

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

214 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.resource.Resource(container)
Bases: f5.bigip.resource.ResourceBase

Base class to represent a Configurable Resource on the device.

Warning: Objects instantiated from subclasses of Resource do NOT contain a URI (self._meta_data[’uri’])
at instantiation!

Resource objects provide the interface for the Creation of new services on the device. Once a new service
has been created, (via self.create or self.load), the instance constructs its URI and stores it as
self._meta_data[’uri’].

It is an error to attempt to call create() or load() on an instance more than once.
self._meta_data[’uri’] MUST not be changed after creation or load.

Note: creation query args, and creation hash fragments are stored as separate _meta_data values.

By “Configurable” we mean that submitting JSON via the PUT method to the URI managed by subclasses of
Resource, changes the state of the corresponding service on the device.

It also means that the URI supports DELETE.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

3.3. f5 215

F5 Python SDK Documentation, Release 0.1.3

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

216 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.3

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

mixins module

class f5.bigip.mixins.ToDictMixin
Bases: object

Convert an object’s attributes to a dictionary

exception f5.bigip.mixins.LazyAttributesRequired
Bases: f5.sdk_exception.F5SDKError

Raised when a object accesses a lazy attribute that is not listed

class f5.bigip.mixins.LazyAttributeMixin
Bases: object

Allow attributes to be created lazily based on the allowed values

class f5.bigip.mixins.ExclusiveAttributesMixin
Bases: object

Overrides __setattr__ to remove exclusive attrs from the object.

class f5.bigip.mixins.UnnamedResourceMixin
Bases: object

This makes a resource object work if there is no name.

These objects do not support create or delete and are often found as Resources that are under an organiz-
ing collection. For example the mgmt/tm/sys/global-settings is one of these and has a kind of tm:sys:global-
settings:global-settingsstate and the URI does not match the kind.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

3.3. f5 217

F5 Python SDK Documentation, Release 0.1.3

f5.common

Subpackages

Submodules

f5.common.constants module

f5.common.iapp_parser module

class f5.common.iapp_parser.IappParser(template_str)
Bases: object

template_sections = [u’presentation’, u’implementation’, u’html-help’, u’role-acl’]

tcl_list_for_attr_re = ‘{(\\s*\\w+\\s*)+}’

tcl_list_for_section_re = ‘(\\s*\\w+\\s*)+’

section_map = {u’html-help’: u’htmlHelp’, u’role-acl’: u’roleAcl’}

attr_map = {u’requires-modules’: u’requiresModules’}

sections_not_required = [u’html-help’, u’role-acl’]

tcl_list_patterns = {u’requires-modules’: ‘{(\\s*\\w+\\s*)+}’, u’role-acl’: ‘(\\s*\\w+\\s*)+’}

template_attrs = [u’description’, u’partition’, u’requires-modules’]

parse_template()
Parse the template string into a dict.

Find the (large) inner sections first, save them, and remove them from a modified string. Then find the
template attributes in the modified string.

Returns dictionary of parsed template

exception f5.common.iapp_parser.EmptyTemplateException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.CurlyBraceMismatchException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.NonextantSectionException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.NonextantTemplateNameException
Bases: f5.sdk_exception.F5SDKError

args

message

218 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.3

exception f5.common.iapp_parser.MalformedTCLListException
Bases: f5.sdk_exception.F5SDKError

args

message

f5.common.logger module

Module contents

f5.sdk_exception

A base exception for all exceptions in this library.

Base Exception

F5SDKError Import and subclass this exception in all exceptions in this library.

exception f5.sdk_exception.F5SDKError
Bases: exceptions.Exception

Import and subclass this exception in all exceptions in this library.

3.3. f5 219

F5 Python SDK Documentation, Release 0.1.3

220 Chapter 3. Detailed Documentation

CHAPTER 4

Copyright

Copyright 2014-2016 F5 Networks Inc.

221

F5 Python SDK Documentation, Release 0.1.3

222 Chapter 4. Copyright

CHAPTER 5

License

5.1 Apache V2.0

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

5.2 Contributor License Agreement

Individuals or business entities who contribute to this project must have completed and submitted the F5 Contributor
License Agreement to Openstack_CLA@f5.com prior to their code submission being included in this project.

223

http://www.apache.org/licenses/LICENSE-2.0
http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html
http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html
mailto:Openstack_CLA@f5.com

F5 Python SDK Documentation, Release 0.1.3

224 Chapter 5. License

Python Module Index

f
f5, 219
f5.bigip, 20
f5.bigip.cm, 22
f5.bigip.cm.device, 23
f5.bigip.cm.device_group, 25
f5.bigip.cm.traffic_group, 29
f5.bigip.ltm, 32
f5.bigip.ltm.monitor, 33
f5.bigip.ltm.nat, 121
f5.bigip.ltm.node, 123
f5.bigip.ltm.policy, 125
f5.bigip.ltm.pool, 134
f5.bigip.ltm.rule, 139
f5.bigip.ltm.snat, 142
f5.bigip.ltm.snat_translation, 147
f5.bigip.ltm.snatpool, 144
f5.bigip.ltm.virtual, 149
f5.bigip.ltm.virtual_address, 154
f5.bigip.mixins, 217
f5.bigip.net, 156
f5.bigip.net.arp, 157
f5.bigip.net.fdb, 181
f5.bigip.net.interface, 159
f5.bigip.net.route, 161
f5.bigip.net.route_domain, 164
f5.bigip.net.selfip, 166
f5.bigip.net.tunnels, 169
f5.bigip.net.vlan, 177
f5.bigip.resource, 210
f5.bigip.shared, 186
f5.bigip.shared.bigip_failover_state,

186
f5.bigip.shared.licensing, 187
f5.bigip.sys, 189
f5.bigip.sys.application, 189
f5.bigip.sys.db, 199
f5.bigip.sys.failover, 202
f5.bigip.sys.folder, 203
f5.bigip.sys.global_settings, 204

f5.bigip.sys.ntp, 205
f5.bigip.sys.performance, 209
f5.common, 219
f5.common.constants, 218
f5.common.iapp_parser, 218
f5.sdk_exception, 219

225

F5 Python SDK Documentation, Release 0.1.3

226 Python Module Index

Index

A
Actions (class in f5.bigip.ltm.policy), 131
Actions_s (class in f5.bigip.ltm.policy), 130
Activation (class in f5.bigip.shared.licensing), 187
All_Stats (class in f5.bigip.sys.performance), 209
Aplscript (class in f5.bigip.sys.application), 191
Aplscripts (class in f5.bigip.sys.application), 191
Applications (class in f5.bigip.sys.application), 190
args (f5.common.iapp_parser.CurlyBraceMismatchException

attribute), 218
args (f5.common.iapp_parser.EmptyTemplateException

attribute), 218
args (f5.common.iapp_parser.MalformedTCLListException

attribute), 219
args (f5.common.iapp_parser.NonextantSectionException

attribute), 218
args (f5.common.iapp_parser.NonextantTemplateNameException

attribute), 218
Arp (class in f5.bigip.net.arp), 158
Arps (class in f5.bigip.net.arp), 157
attr_map (f5.common.iapp_parser.IappParser attribute),

218

B
BigIP (class in f5.bigip), 21
Bigip_Failover_State (class in

f5.bigip.shared.bigip_failover_state), 186

C
Cm (class in f5.bigip.cm), 22
Collection (class in f5.bigip.resource), 214
Conditions (class in f5.bigip.ltm.policy), 133
Conditions_s (class in f5.bigip.ltm.policy), 132
create() (f5.bigip.BigIP method), 21
create() (f5.bigip.cm.Cm method), 22
create() (f5.bigip.cm.device.Device method), 23
create() (f5.bigip.cm.device.Devices method), 23
create() (f5.bigip.cm.device_group.Device_Group

method), 26
create() (f5.bigip.cm.device_group.Device_Groups

method), 25

create() (f5.bigip.cm.device_group.Devices method), 28
create() (f5.bigip.cm.device_group.Devices_s method),

27
create() (f5.bigip.cm.traffic_group.Traffic_Group

method), 30
create() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
create() (f5.bigip.ltm.Ltm method), 32
create() (f5.bigip.ltm.monitor.Diameter method), 40
create() (f5.bigip.ltm.monitor.Diameters method), 39
create() (f5.bigip.ltm.monitor.Dns method), 42
create() (f5.bigip.ltm.monitor.Dns_s method), 41
create() (f5.bigip.ltm.monitor.External method), 44
create() (f5.bigip.ltm.monitor.Externals method), 43
create() (f5.bigip.ltm.monitor.Firepass method), 46
create() (f5.bigip.ltm.monitor.Firepass_s method), 46
create() (f5.bigip.ltm.monitor.Ftp method), 49
create() (f5.bigip.ltm.monitor.Ftps method), 48
create() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
create() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
create() (f5.bigip.ltm.monitor.Http method), 35
create() (f5.bigip.ltm.monitor.HttpS method), 38
create() (f5.bigip.ltm.monitor.Https method), 35
create() (f5.bigip.ltm.monitor.Https_s method), 37
create() (f5.bigip.ltm.monitor.Icmp method), 53
create() (f5.bigip.ltm.monitor.Icmps method), 52
create() (f5.bigip.ltm.monitor.Imap method), 55
create() (f5.bigip.ltm.monitor.Imaps method), 54
create() (f5.bigip.ltm.monitor.Inband method), 57
create() (f5.bigip.ltm.monitor.Inbands method), 57
create() (f5.bigip.ltm.monitor.Ldap method), 60
create() (f5.bigip.ltm.monitor.Ldaps method), 59
create() (f5.bigip.ltm.monitor.Module_Score method), 62
create() (f5.bigip.ltm.monitor.Module_Scores method),

61
create() (f5.bigip.ltm.monitor.Mssql method), 66
create() (f5.bigip.ltm.monitor.Mssqls method), 65
create() (f5.bigip.ltm.monitor.Mysql method), 64
create() (f5.bigip.ltm.monitor.Mysqls method), 63
create() (f5.bigip.ltm.monitor.Nntp method), 68

227

F5 Python SDK Documentation, Release 0.1.3

create() (f5.bigip.ltm.monitor.Nntps method), 68
create() (f5.bigip.ltm.monitor.NONE method), 71
create() (f5.bigip.ltm.monitor.Nones method), 70
create() (f5.bigip.ltm.monitor.Oracle method), 73
create() (f5.bigip.ltm.monitor.Oracles method), 72
create() (f5.bigip.ltm.monitor.Pop3 method), 75
create() (f5.bigip.ltm.monitor.Pop3s method), 74
create() (f5.bigip.ltm.monitor.Postgresql method), 77
create() (f5.bigip.ltm.monitor.Postgresqls method), 76
create() (f5.bigip.ltm.monitor.Radius method), 79
create() (f5.bigip.ltm.monitor.Radius_Accounting

method), 82
create() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
create() (f5.bigip.ltm.monitor.Radius_s method), 79
create() (f5.bigip.ltm.monitor.Real_Server method), 84
create() (f5.bigip.ltm.monitor.Real_Servers method), 83
create() (f5.bigip.ltm.monitor.Rpc method), 86
create() (f5.bigip.ltm.monitor.Rpcs method), 85
create() (f5.bigip.ltm.monitor.Sasp method), 88
create() (f5.bigip.ltm.monitor.Sasps method), 87
create() (f5.bigip.ltm.monitor.Scripted method), 90
create() (f5.bigip.ltm.monitor.Scripteds method), 90
create() (f5.bigip.ltm.monitor.Sip method), 93
create() (f5.bigip.ltm.monitor.Sips method), 92
create() (f5.bigip.ltm.monitor.Smb method), 95
create() (f5.bigip.ltm.monitor.Smbs method), 94
create() (f5.bigip.ltm.monitor.Smtp method), 97
create() (f5.bigip.ltm.monitor.Smtps method), 96
create() (f5.bigip.ltm.monitor.Snmp_Dca method), 99
create() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

101
create() (f5.bigip.ltm.monitor.Snmp_Dca_Bases method),

101
create() (f5.bigip.ltm.monitor.Snmp_Dcas method), 98
create() (f5.bigip.ltm.monitor.Soap method), 104
create() (f5.bigip.ltm.monitor.Soaps method), 103
create() (f5.bigip.ltm.monitor.Tcp method), 106
create() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
create() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
create() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

110
create() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

109
create() (f5.bigip.ltm.monitor.Tcps method), 105
create() (f5.bigip.ltm.monitor.Udp method), 112
create() (f5.bigip.ltm.monitor.Udps method), 112
create() (f5.bigip.ltm.monitor.Virtual_Location method),

115
create() (f5.bigip.ltm.monitor.Virtual_Locations method),

114
create() (f5.bigip.ltm.monitor.Wap method), 117
create() (f5.bigip.ltm.monitor.Waps method), 116
create() (f5.bigip.ltm.monitor.Wmi method), 119

create() (f5.bigip.ltm.monitor.Wmis method), 118
create() (f5.bigip.ltm.nat.Nat method), 122
create() (f5.bigip.ltm.nat.Nats method), 121
create() (f5.bigip.ltm.node.Node method), 124
create() (f5.bigip.ltm.node.Nodes method), 123
create() (f5.bigip.ltm.policy.Actions method), 131
create() (f5.bigip.ltm.policy.Actions_s method), 130
create() (f5.bigip.ltm.policy.Conditions method), 133
create() (f5.bigip.ltm.policy.Conditions_s method), 132
create() (f5.bigip.ltm.policy.Policy method), 126
create() (f5.bigip.ltm.policy.Policys method), 126
create() (f5.bigip.ltm.policy.Rules method), 129
create() (f5.bigip.ltm.policy.Rules_s method), 128
create() (f5.bigip.ltm.pool.Members method), 138
create() (f5.bigip.ltm.pool.Members_s method), 137
create() (f5.bigip.ltm.pool.Pool method), 135
create() (f5.bigip.ltm.pool.Pools method), 135
create() (f5.bigip.ltm.rule.Rule method), 140
create() (f5.bigip.ltm.rule.Rules method), 139
create() (f5.bigip.ltm.snat.Snat method), 143
create() (f5.bigip.ltm.snat.Snats method), 142
create() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 148
create() (f5.bigip.ltm.snat_translation.Snat_Translations

method), 147
create() (f5.bigip.ltm.snatpool.Snatpool method), 145
create() (f5.bigip.ltm.snatpool.Snatpools method), 144
create() (f5.bigip.ltm.virtual.Profiles method), 152
create() (f5.bigip.ltm.virtual.Profiles_s method), 153
create() (f5.bigip.ltm.virtual.Virtual method), 150
create() (f5.bigip.ltm.virtual.Virtuals method), 149
create() (f5.bigip.ltm.virtual_address.Virtual_Address

method), 155
create() (f5.bigip.ltm.virtual_address.Virtual_Address_s

method), 154
create() (f5.bigip.mixins.UnnamedResourceMixin

method), 217
create() (f5.bigip.net.arp.Arp method), 158
create() (f5.bigip.net.arp.Arps method), 157
create() (f5.bigip.net.fdb.Fdbs method), 182
create() (f5.bigip.net.fdb.Tunnel method), 182
create() (f5.bigip.net.fdb.Tunnels method), 184
create() (f5.bigip.net.fdb.Vlans method), 185
create() (f5.bigip.net.interface.Interface method), 160
create() (f5.bigip.net.interface.Interfaces method), 159
create() (f5.bigip.net.route.Route method), 162
create() (f5.bigip.net.route.Routes method), 162
create() (f5.bigip.net.route_domain.Route_Domain

method), 165
create() (f5.bigip.net.route_domain.Route_Domains

method), 164
create() (f5.bigip.net.selfip.Selfip method), 168
create() (f5.bigip.net.selfip.Selfips method), 167
create() (f5.bigip.net.tunnels.Gre method), 173

228 Index

F5 Python SDK Documentation, Release 0.1.3

create() (f5.bigip.net.tunnels.Gres method), 172
create() (f5.bigip.net.tunnels.Tunnel method), 171
create() (f5.bigip.net.tunnels.Tunnels method), 170
create() (f5.bigip.net.tunnels.Tunnels_s method), 169
create() (f5.bigip.net.tunnels.Vxlan method), 175
create() (f5.bigip.net.tunnels.Vxlans method), 174
create() (f5.bigip.net.vlan.Interfaces method), 180
create() (f5.bigip.net.vlan.Interfaces_s method), 179
create() (f5.bigip.net.vlan.Vlan method), 178
create() (f5.bigip.net.vlan.Vlans method), 177
create() (f5.bigip.resource.Collection method), 214
create() (f5.bigip.resource.OrganizingCollection

method), 213
create() (f5.bigip.resource.Resource method), 215
create() (f5.bigip.resource.ResourceBase method), 213
create() (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

method), 186
create() (f5.bigip.shared.licensing.Activation method),

187
create() (f5.bigip.shared.licensing.Registration method),

188
create() (f5.bigip.sys.application.Aplscript method), 191
create() (f5.bigip.sys.application.Aplscripts method), 191
create() (f5.bigip.sys.application.Applications method),

190
create() (f5.bigip.sys.application.Customstat method),

194
create() (f5.bigip.sys.application.Customstats method),

193
create() (f5.bigip.sys.application.Service method), 196
create() (f5.bigip.sys.application.Services method), 195
create() (f5.bigip.sys.application.Template method), 198
create() (f5.bigip.sys.application.Templates method), 197
create() (f5.bigip.sys.db.Db method), 200
create() (f5.bigip.sys.db.Dbs method), 200
create() (f5.bigip.sys.failover.Failover method), 202
create() (f5.bigip.sys.folder.Folders method), 203
create() (f5.bigip.sys.global_settings.Global_Settings

method), 204
create() (f5.bigip.sys.ntp.Ntp method), 205
create() (f5.bigip.sys.ntp.Restrict method), 207
create() (f5.bigip.sys.ntp.Restricts method), 206
create() (f5.bigip.sys.performance.All_Stats method),

210
create() (f5.bigip.sys.performance.Performance method),

209
CurlyBraceMismatchException, 218
Customstat (class in f5.bigip.sys.application), 194
Customstats (class in f5.bigip.sys.application), 193

D
Db (class in f5.bigip.sys.db), 200
Dbs (class in f5.bigip.sys.db), 199
delete() (f5.bigip.BigIP method), 21

delete() (f5.bigip.cm.Cm method), 22
delete() (f5.bigip.cm.device.Device method), 24
delete() (f5.bigip.cm.device.Devices method), 23
delete() (f5.bigip.cm.device_group.Device_Group

method), 26
delete() (f5.bigip.cm.device_group.Device_Groups

method), 25
delete() (f5.bigip.cm.device_group.Devices method), 28
delete() (f5.bigip.cm.device_group.Devices_s method),

27
delete() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
delete() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
delete() (f5.bigip.ltm.Ltm method), 32
delete() (f5.bigip.ltm.monitor.Diameter method), 40
delete() (f5.bigip.ltm.monitor.Diameters method), 39
delete() (f5.bigip.ltm.monitor.Dns method), 42
delete() (f5.bigip.ltm.monitor.Dns_s method), 41
delete() (f5.bigip.ltm.monitor.External method), 44
delete() (f5.bigip.ltm.monitor.Externals method), 44
delete() (f5.bigip.ltm.monitor.Firepass method), 47
delete() (f5.bigip.ltm.monitor.Firepass_s method), 46
delete() (f5.bigip.ltm.monitor.Ftp method), 49
delete() (f5.bigip.ltm.monitor.Ftps method), 48
delete() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
delete() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
delete() (f5.bigip.ltm.monitor.Http method), 36
delete() (f5.bigip.ltm.monitor.HttpS method), 38
delete() (f5.bigip.ltm.monitor.Https method), 35
delete() (f5.bigip.ltm.monitor.Https_s method), 37
delete() (f5.bigip.ltm.monitor.Icmp method), 53
delete() (f5.bigip.ltm.monitor.Icmps method), 52
delete() (f5.bigip.ltm.monitor.Imap method), 55
delete() (f5.bigip.ltm.monitor.Imaps method), 55
delete() (f5.bigip.ltm.monitor.Inband method), 58
delete() (f5.bigip.ltm.monitor.Inbands method), 57
delete() (f5.bigip.ltm.monitor.Ldap method), 60
delete() (f5.bigip.ltm.monitor.Ldaps method), 59
delete() (f5.bigip.ltm.monitor.Module_Score method), 62
delete() (f5.bigip.ltm.monitor.Module_Scores method),

61
delete() (f5.bigip.ltm.monitor.Mssql method), 66
delete() (f5.bigip.ltm.monitor.Mssqls method), 66
delete() (f5.bigip.ltm.monitor.Mysql method), 64
delete() (f5.bigip.ltm.monitor.Mysqls method), 63
delete() (f5.bigip.ltm.monitor.Nntp method), 69
delete() (f5.bigip.ltm.monitor.Nntps method), 68
delete() (f5.bigip.ltm.monitor.NONE method), 71
delete() (f5.bigip.ltm.monitor.Nones method), 70
delete() (f5.bigip.ltm.monitor.Oracle method), 73
delete() (f5.bigip.ltm.monitor.Oracles method), 72
delete() (f5.bigip.ltm.monitor.Pop3 method), 75

Index 229

F5 Python SDK Documentation, Release 0.1.3

delete() (f5.bigip.ltm.monitor.Pop3s method), 74
delete() (f5.bigip.ltm.monitor.Postgresql method), 77
delete() (f5.bigip.ltm.monitor.Postgresqls method), 77
delete() (f5.bigip.ltm.monitor.Radius method), 80
delete() (f5.bigip.ltm.monitor.Radius_Accounting

method), 82
delete() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
delete() (f5.bigip.ltm.monitor.Radius_s method), 79
delete() (f5.bigip.ltm.monitor.Real_Server method), 84
delete() (f5.bigip.ltm.monitor.Real_Servers method), 83
delete() (f5.bigip.ltm.monitor.Rpc method), 86
delete() (f5.bigip.ltm.monitor.Rpcs method), 85
delete() (f5.bigip.ltm.monitor.Sasp method), 88
delete() (f5.bigip.ltm.monitor.Sasps method), 88
delete() (f5.bigip.ltm.monitor.Scripted method), 91
delete() (f5.bigip.ltm.monitor.Scripteds method), 90
delete() (f5.bigip.ltm.monitor.Sip method), 93
delete() (f5.bigip.ltm.monitor.Sips method), 92
delete() (f5.bigip.ltm.monitor.Smb method), 95
delete() (f5.bigip.ltm.monitor.Smbs method), 94
delete() (f5.bigip.ltm.monitor.Smtp method), 97
delete() (f5.bigip.ltm.monitor.Smtps method), 96
delete() (f5.bigip.ltm.monitor.Snmp_Dca method), 99
delete() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102
delete() (f5.bigip.ltm.monitor.Snmp_Dca_Bases method),

101
delete() (f5.bigip.ltm.monitor.Snmp_Dcas method), 99
delete() (f5.bigip.ltm.monitor.Soap method), 104
delete() (f5.bigip.ltm.monitor.Soaps method), 103
delete() (f5.bigip.ltm.monitor.Tcp method), 106
delete() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
delete() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
delete() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

110
delete() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

110
delete() (f5.bigip.ltm.monitor.Tcps method), 105
delete() (f5.bigip.ltm.monitor.Udp method), 113
delete() (f5.bigip.ltm.monitor.Udps method), 112
delete() (f5.bigip.ltm.monitor.Virtual_Location method),

115
delete() (f5.bigip.ltm.monitor.Virtual_Locations method),

114
delete() (f5.bigip.ltm.monitor.Wap method), 117
delete() (f5.bigip.ltm.monitor.Waps method), 116
delete() (f5.bigip.ltm.monitor.Wmi method), 120
delete() (f5.bigip.ltm.monitor.Wmis method), 118
delete() (f5.bigip.ltm.nat.Nat method), 122
delete() (f5.bigip.ltm.nat.Nats method), 121
delete() (f5.bigip.ltm.node.Node method), 124
delete() (f5.bigip.ltm.node.Nodes method), 123
delete() (f5.bigip.ltm.policy.Actions method), 131

delete() (f5.bigip.ltm.policy.Actions_s method), 130
delete() (f5.bigip.ltm.policy.Conditions method), 133
delete() (f5.bigip.ltm.policy.Conditions_s method), 132
delete() (f5.bigip.ltm.policy.Policy method), 127
delete() (f5.bigip.ltm.policy.Policys method), 126
delete() (f5.bigip.ltm.policy.Rules method), 129
delete() (f5.bigip.ltm.policy.Rules_s method), 128
delete() (f5.bigip.ltm.pool.Members method), 139
delete() (f5.bigip.ltm.pool.Members_s method), 137
delete() (f5.bigip.ltm.pool.Pool method), 136
delete() (f5.bigip.ltm.pool.Pools method), 135
delete() (f5.bigip.ltm.rule.Rule method), 140
delete() (f5.bigip.ltm.rule.Rules method), 140
delete() (f5.bigip.ltm.snat.Snat method), 143
delete() (f5.bigip.ltm.snat.Snats method), 142
delete() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 148
delete() (f5.bigip.ltm.snat_translation.Snat_Translations

method), 147
delete() (f5.bigip.ltm.snatpool.Snatpool method), 145
delete() (f5.bigip.ltm.snatpool.Snatpools method), 145
delete() (f5.bigip.ltm.virtual.Profiles method), 152
delete() (f5.bigip.ltm.virtual.Profiles_s method), 153
delete() (f5.bigip.ltm.virtual.Virtual method), 150
delete() (f5.bigip.ltm.virtual.Virtuals method), 149
delete() (f5.bigip.ltm.virtual_address.Virtual_Address

method), 155
delete() (f5.bigip.ltm.virtual_address.Virtual_Address_s

method), 154
delete() (f5.bigip.mixins.UnnamedResourceMixin

method), 217
delete() (f5.bigip.net.arp.Arp method), 158
delete() (f5.bigip.net.arp.Arps method), 157
delete() (f5.bigip.net.fdb.Fdbs method), 182
delete() (f5.bigip.net.fdb.Tunnel method), 183
delete() (f5.bigip.net.fdb.Tunnels method), 184
delete() (f5.bigip.net.fdb.Vlans method), 185
delete() (f5.bigip.net.interface.Interface method), 160
delete() (f5.bigip.net.interface.Interfaces method), 159
delete() (f5.bigip.net.route.Route method), 163
delete() (f5.bigip.net.route.Routes method), 162
delete() (f5.bigip.net.route_domain.Route_Domain

method), 165
delete() (f5.bigip.net.route_domain.Route_Domains

method), 164
delete() (f5.bigip.net.selfip.Selfip method), 168
delete() (f5.bigip.net.selfip.Selfips method), 167
delete() (f5.bigip.net.tunnels.Gre method), 173
delete() (f5.bigip.net.tunnels.Gres method), 172
delete() (f5.bigip.net.tunnels.Tunnel method), 171
delete() (f5.bigip.net.tunnels.Tunnels method), 170
delete() (f5.bigip.net.tunnels.Tunnels_s method), 169
delete() (f5.bigip.net.tunnels.Vxlan method), 175
delete() (f5.bigip.net.tunnels.Vxlans method), 175

230 Index

F5 Python SDK Documentation, Release 0.1.3

delete() (f5.bigip.net.vlan.Interfaces method), 180
delete() (f5.bigip.net.vlan.Interfaces_s method), 179
delete() (f5.bigip.net.vlan.Vlan method), 178
delete() (f5.bigip.net.vlan.Vlans method), 177
delete() (f5.bigip.resource.Collection method), 214
delete() (f5.bigip.resource.OrganizingCollection

method), 214
delete() (f5.bigip.resource.Resource method), 216
delete() (f5.bigip.resource.ResourceBase method), 213
delete() (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

method), 186
delete() (f5.bigip.shared.licensing.Activation method),

188
delete() (f5.bigip.shared.licensing.Registration method),

188
delete() (f5.bigip.sys.application.Aplscript method), 192
delete() (f5.bigip.sys.application.Aplscripts method), 191
delete() (f5.bigip.sys.application.Applications method),

190
delete() (f5.bigip.sys.application.Customstat method),

194
delete() (f5.bigip.sys.application.Customstats method),

193
delete() (f5.bigip.sys.application.Service method), 196
delete() (f5.bigip.sys.application.Services method), 195
delete() (f5.bigip.sys.application.Template method), 198
delete() (f5.bigip.sys.application.Templates method), 197
delete() (f5.bigip.sys.db.Db method), 200
delete() (f5.bigip.sys.db.Dbs method), 200
delete() (f5.bigip.sys.failover.Failover method), 202
delete() (f5.bigip.sys.folder.Folders method), 203
delete() (f5.bigip.sys.global_settings.Global_Settings

method), 204
delete() (f5.bigip.sys.ntp.Ntp method), 206
delete() (f5.bigip.sys.ntp.Restrict method), 207
delete() (f5.bigip.sys.ntp.Restricts method), 207
delete() (f5.bigip.sys.performance.All_Stats method),

210
delete() (f5.bigip.sys.performance.Performance method),

209
Device (class in f5.bigip.cm.device), 23
Device_Group (class in f5.bigip.cm.device_group), 26
Device_Groups (class in f5.bigip.cm.device_group), 25
DeviceProvidesIncompatibleKey, 211
Devices (class in f5.bigip.cm.device), 23
Devices (class in f5.bigip.cm.device_group), 28
Devices_s (class in f5.bigip.cm.device_group), 27
Diameter (class in f5.bigip.ltm.monitor), 40
Diameters (class in f5.bigip.ltm.monitor), 39
Dns (class in f5.bigip.ltm.monitor), 42
Dns_s (class in f5.bigip.ltm.monitor), 41

E
EmptyTemplateException, 218

ExclusiveAttributesMixin (class in f5.bigip.mixins), 217
exists() (f5.bigip.cm.device.Device method), 24
exists() (f5.bigip.cm.device_group.Device_Group

method), 26
exists() (f5.bigip.cm.device_group.Devices method), 28
exists() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
exists() (f5.bigip.ltm.monitor.Diameter method), 40
exists() (f5.bigip.ltm.monitor.Dns method), 42
exists() (f5.bigip.ltm.monitor.External method), 45
exists() (f5.bigip.ltm.monitor.Firepass method), 47
exists() (f5.bigip.ltm.monitor.Ftp method), 49
exists() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
exists() (f5.bigip.ltm.monitor.Http method), 36
exists() (f5.bigip.ltm.monitor.HttpS method), 38
exists() (f5.bigip.ltm.monitor.Icmp method), 53
exists() (f5.bigip.ltm.monitor.Imap method), 56
exists() (f5.bigip.ltm.monitor.Inband method), 58
exists() (f5.bigip.ltm.monitor.Ldap method), 60
exists() (f5.bigip.ltm.monitor.Module_Score method), 62
exists() (f5.bigip.ltm.monitor.Mssql method), 67
exists() (f5.bigip.ltm.monitor.Mysql method), 64
exists() (f5.bigip.ltm.monitor.Nntp method), 69
exists() (f5.bigip.ltm.monitor.NONE method), 71
exists() (f5.bigip.ltm.monitor.Oracle method), 73
exists() (f5.bigip.ltm.monitor.Pop3 method), 75
exists() (f5.bigip.ltm.monitor.Postgresql method), 78
exists() (f5.bigip.ltm.monitor.Radius method), 80
exists() (f5.bigip.ltm.monitor.Radius_Accounting

method), 82
exists() (f5.bigip.ltm.monitor.Real_Server method), 85
exists() (f5.bigip.ltm.monitor.Rpc method), 86
exists() (f5.bigip.ltm.monitor.Sasp method), 89
exists() (f5.bigip.ltm.monitor.Scripted method), 91
exists() (f5.bigip.ltm.monitor.Sip method), 93
exists() (f5.bigip.ltm.monitor.Smb method), 95
exists() (f5.bigip.ltm.monitor.Smtp method), 97
exists() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
exists() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102
exists() (f5.bigip.ltm.monitor.Soap method), 104
exists() (f5.bigip.ltm.monitor.Tcp method), 106
exists() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
exists() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
exists() (f5.bigip.ltm.monitor.Udp method), 113
exists() (f5.bigip.ltm.monitor.Virtual_Location method),

115
exists() (f5.bigip.ltm.monitor.Wap method), 117
exists() (f5.bigip.ltm.monitor.Wmi method), 120
exists() (f5.bigip.ltm.nat.Nat method), 122
exists() (f5.bigip.ltm.node.Node method), 124
exists() (f5.bigip.ltm.policy.Actions method), 131
exists() (f5.bigip.ltm.policy.Conditions method), 133

Index 231

F5 Python SDK Documentation, Release 0.1.3

exists() (f5.bigip.ltm.policy.Policy method), 127
exists() (f5.bigip.ltm.policy.Rules method), 129
exists() (f5.bigip.ltm.pool.Members method), 138
exists() (f5.bigip.ltm.pool.Pool method), 136
exists() (f5.bigip.ltm.rule.Rule method), 141
exists() (f5.bigip.ltm.snat.Snat method), 143
exists() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 148
exists() (f5.bigip.ltm.snatpool.Snatpool method), 146
exists() (f5.bigip.ltm.virtual.Profiles method), 152
exists() (f5.bigip.ltm.virtual.Virtual method), 151
exists() (f5.bigip.ltm.virtual_address.Virtual_Address

method), 155
exists() (f5.bigip.net.arp.Arp method), 158
exists() (f5.bigip.net.fdb.Tunnel method), 183
exists() (f5.bigip.net.interface.Interface method), 160
exists() (f5.bigip.net.route.Route method), 163
exists() (f5.bigip.net.route_domain.Route_Domain

method), 165
exists() (f5.bigip.net.selfip.Selfip method), 168
exists() (f5.bigip.net.tunnels.Gre method), 173
exists() (f5.bigip.net.tunnels.Tunnel method), 171
exists() (f5.bigip.net.tunnels.Vxlan method), 176
exists() (f5.bigip.net.vlan.Interfaces method), 180
exists() (f5.bigip.net.vlan.Vlan method), 178
exists() (f5.bigip.resource.Resource method), 216
exists() (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

method), 186
exists() (f5.bigip.shared.licensing.Activation method),

188
exists() (f5.bigip.shared.licensing.Registration method),

188
exists() (f5.bigip.sys.application.Aplscript method), 192
exists() (f5.bigip.sys.application.Customstat method),

194
exists() (f5.bigip.sys.application.Service method), 196
exists() (f5.bigip.sys.application.Template method), 198
exists() (f5.bigip.sys.db.Db method), 201
exists() (f5.bigip.sys.failover.Failover method), 202
exists() (f5.bigip.sys.global_settings.Global_Settings

method), 204
exists() (f5.bigip.sys.ntp.Ntp method), 206
exists() (f5.bigip.sys.ntp.Restrict method), 208
exists() (f5.bigip.sys.performance.All_Stats method), 210
External (class in f5.bigip.ltm.monitor), 44
Externals (class in f5.bigip.ltm.monitor), 43

F
f5 (module), 219
f5.bigip (module), 20
f5.bigip.cm (module), 22
f5.bigip.cm.device (module), 23
f5.bigip.cm.device_group (module), 25
f5.bigip.cm.traffic_group (module), 29

f5.bigip.ltm (module), 32
f5.bigip.ltm.monitor (module), 33
f5.bigip.ltm.nat (module), 121
f5.bigip.ltm.node (module), 123
f5.bigip.ltm.policy (module), 125
f5.bigip.ltm.pool (module), 134
f5.bigip.ltm.rule (module), 139
f5.bigip.ltm.snat (module), 142
f5.bigip.ltm.snat_translation (module), 147
f5.bigip.ltm.snatpool (module), 144
f5.bigip.ltm.virtual (module), 149
f5.bigip.ltm.virtual_address (module), 154
f5.bigip.mixins (module), 217
f5.bigip.net (module), 156
f5.bigip.net.arp (module), 157
f5.bigip.net.fdb (module), 181
f5.bigip.net.interface (module), 159
f5.bigip.net.route (module), 161
f5.bigip.net.route_domain (module), 164
f5.bigip.net.selfip (module), 166
f5.bigip.net.tunnels (module), 169
f5.bigip.net.vlan (module), 177
f5.bigip.resource (module), 210
f5.bigip.shared (module), 186
f5.bigip.shared.bigip_failover_state (module), 186
f5.bigip.shared.licensing (module), 187
f5.bigip.sys (module), 189
f5.bigip.sys.application (module), 189
f5.bigip.sys.db (module), 199
f5.bigip.sys.failover (module), 202
f5.bigip.sys.folder (module), 203
f5.bigip.sys.global_settings (module), 204
f5.bigip.sys.ntp (module), 205
f5.bigip.sys.performance (module), 209
f5.common (module), 219
f5.common.constants (module), 218
f5.common.iapp_parser (module), 218
f5.sdk_exception (module), 219
F5SDKError, 219
Failover (class in f5.bigip.sys.failover), 202
Fdbs (class in f5.bigip.net.fdb), 182
Firepass (class in f5.bigip.ltm.monitor), 46
Firepass_s (class in f5.bigip.ltm.monitor), 46
Folders (class in f5.bigip.sys.folder), 203
Ftp (class in f5.bigip.ltm.monitor), 49
Ftps (class in f5.bigip.ltm.monitor), 48

G
Gateway_Icmp (class in f5.bigip.ltm.monitor), 51
Gateway_Icmps (class in f5.bigip.ltm.monitor), 50
GenerationMismatch, 212
get_collection() (f5.bigip.BigIP method), 21
get_collection() (f5.bigip.cm.Cm method), 22
get_collection() (f5.bigip.cm.device.Devices method), 23

232 Index

F5 Python SDK Documentation, Release 0.1.3

get_collection() (f5.bigip.cm.device_group.Device_Groups
method), 25

get_collection() (f5.bigip.cm.device_group.Devices_s
method), 27

get_collection() (f5.bigip.cm.traffic_group.Traffic_Groups
method), 30

get_collection() (f5.bigip.ltm.Ltm method), 32
get_collection() (f5.bigip.ltm.monitor.Diameters

method), 39
get_collection() (f5.bigip.ltm.monitor.Dns_s method), 41
get_collection() (f5.bigip.ltm.monitor.Externals method),

44
get_collection() (f5.bigip.ltm.monitor.Firepass_s

method), 46
get_collection() (f5.bigip.ltm.monitor.Ftps method), 48
get_collection() (f5.bigip.ltm.monitor.Gateway_Icmps

method), 50
get_collection() (f5.bigip.ltm.monitor.Https method), 35
get_collection() (f5.bigip.ltm.monitor.Https_s method),

37
get_collection() (f5.bigip.ltm.monitor.Icmps method), 52
get_collection() (f5.bigip.ltm.monitor.Imaps method), 55
get_collection() (f5.bigip.ltm.monitor.Inbands method),

57
get_collection() (f5.bigip.ltm.monitor.Ldaps method), 59
get_collection() (f5.bigip.ltm.monitor.Module_Scores

method), 61
get_collection() (f5.bigip.ltm.monitor.Mssqls method),

66
get_collection() (f5.bigip.ltm.monitor.Mysqls method),

63
get_collection() (f5.bigip.ltm.monitor.Nntps method), 68
get_collection() (f5.bigip.ltm.monitor.Nones method), 70
get_collection() (f5.bigip.ltm.monitor.Oracles method),

72
get_collection() (f5.bigip.ltm.monitor.Pop3s method), 74
get_collection() (f5.bigip.ltm.monitor.Postgresqls

method), 77
get_collection() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
get_collection() (f5.bigip.ltm.monitor.Radius_s method),

79
get_collection() (f5.bigip.ltm.monitor.Real_Servers

method), 83
get_collection() (f5.bigip.ltm.monitor.Rpcs method), 85
get_collection() (f5.bigip.ltm.monitor.Sasps method), 88
get_collection() (f5.bigip.ltm.monitor.Scripteds method),

90
get_collection() (f5.bigip.ltm.monitor.Sips method), 92
get_collection() (f5.bigip.ltm.monitor.Smbs method), 94
get_collection() (f5.bigip.ltm.monitor.Smtps method), 96
get_collection() (f5.bigip.ltm.monitor.Snmp_Dca_Bases

method), 101
get_collection() (f5.bigip.ltm.monitor.Snmp_Dcas

method), 99
get_collection() (f5.bigip.ltm.monitor.Soaps method),

103
get_collection() (f5.bigip.ltm.monitor.Tcp_Echos

method), 107
get_collection() (f5.bigip.ltm.monitor.Tcp_Half_Opens

method), 110
get_collection() (f5.bigip.ltm.monitor.Tcps method), 105
get_collection() (f5.bigip.ltm.monitor.Udps method), 112
get_collection() (f5.bigip.ltm.monitor.Virtual_Locations

method), 114
get_collection() (f5.bigip.ltm.monitor.Waps method), 116
get_collection() (f5.bigip.ltm.monitor.Wmis method),

118
get_collection() (f5.bigip.ltm.nat.Nats method), 121
get_collection() (f5.bigip.ltm.node.Nodes method), 123
get_collection() (f5.bigip.ltm.policy.Actions_s method),

130
get_collection() (f5.bigip.ltm.policy.Conditions_s

method), 132
get_collection() (f5.bigip.ltm.policy.Policys method), 126
get_collection() (f5.bigip.ltm.policy.Rules_s method),

128
get_collection() (f5.bigip.ltm.pool.Members_s method),

137
get_collection() (f5.bigip.ltm.pool.Pools method), 135
get_collection() (f5.bigip.ltm.rule.Rules method), 140
get_collection() (f5.bigip.ltm.snat.Snats method), 142
get_collection() (f5.bigip.ltm.snat_translation.Snat_Translations

method), 147
get_collection() (f5.bigip.ltm.snatpool.Snatpools

method), 145
get_collection() (f5.bigip.ltm.virtual.Profiles_s method),

153
get_collection() (f5.bigip.ltm.virtual.Virtuals method),

150
get_collection() (f5.bigip.ltm.virtual_address.Virtual_Address_s

method), 154
get_collection() (f5.bigip.net.arp.Arps method), 157
get_collection() (f5.bigip.net.fdb.Fdbs method), 182
get_collection() (f5.bigip.net.fdb.Tunnels method), 184
get_collection() (f5.bigip.net.fdb.Vlans method), 185
get_collection() (f5.bigip.net.interface.Interfaces

method), 160
get_collection() (f5.bigip.net.route.Routes method), 162
get_collection() (f5.bigip.net.route_domain.Route_Domains

method), 164
get_collection() (f5.bigip.net.selfip.Selfips method), 167
get_collection() (f5.bigip.net.tunnels.Gres method), 172
get_collection() (f5.bigip.net.tunnels.Tunnels method),

170
get_collection() (f5.bigip.net.tunnels.Tunnels_s method),

169
get_collection() (f5.bigip.net.tunnels.Vxlans method),

Index 233

F5 Python SDK Documentation, Release 0.1.3

175
get_collection() (f5.bigip.net.vlan.Interfaces_s method),

179
get_collection() (f5.bigip.net.vlan.Vlans method), 177
get_collection() (f5.bigip.resource.Collection method),

214
get_collection() (f5.bigip.resource.OrganizingCollection

method), 213
get_collection() (f5.bigip.sys.application.Aplscripts

method), 191
get_collection() (f5.bigip.sys.application.Applications

method), 190
get_collection() (f5.bigip.sys.application.Customstats

method), 193
get_collection() (f5.bigip.sys.application.Services

method), 195
get_collection() (f5.bigip.sys.application.Templates

method), 197
get_collection() (f5.bigip.sys.db.Dbs method), 200
get_collection() (f5.bigip.sys.folder.Folders method), 203
get_collection() (f5.bigip.sys.ntp.Restricts method), 207
get_collection() (f5.bigip.sys.performance.Performance

method), 209
Global_Settings (class in f5.bigip.sys.global_settings),

204
Gre (class in f5.bigip.net.tunnels), 173
Gres (class in f5.bigip.net.tunnels), 172

H
Http (class in f5.bigip.ltm.monitor), 35
HttpS (class in f5.bigip.ltm.monitor), 38
Https (class in f5.bigip.ltm.monitor), 35
Https_s (class in f5.bigip.ltm.monitor), 37

I
IappParser (class in f5.common.iapp_parser), 218
Icmp (class in f5.bigip.ltm.monitor), 53
Icmps (class in f5.bigip.ltm.monitor), 52
Imap (class in f5.bigip.ltm.monitor), 55
Imaps (class in f5.bigip.ltm.monitor), 54
Inband (class in f5.bigip.ltm.monitor), 57
Inbands (class in f5.bigip.ltm.monitor), 57
Interface (class in f5.bigip.net.interface), 160
Interfaces (class in f5.bigip.net.interface), 159
Interfaces (class in f5.bigip.net.vlan), 180
Interfaces_s (class in f5.bigip.net.vlan), 179
InvalidForceType, 212
InvalidResource, 211

K
KindTypeMismatch, 211

L
LazyAttributeMixin (class in f5.bigip.mixins), 217

LazyAttributesRequired, 217
Ldap (class in f5.bigip.ltm.monitor), 60
Ldaps (class in f5.bigip.ltm.monitor), 59
Licensing (class in f5.bigip.shared.licensing), 187
load() (f5.bigip.cm.device.Device method), 24
load() (f5.bigip.cm.device_group.Device_Group

method), 27
load() (f5.bigip.cm.device_group.Devices method), 29
load() (f5.bigip.cm.traffic_group.Traffic_Group method),

31
load() (f5.bigip.ltm.monitor.Diameter method), 41
load() (f5.bigip.ltm.monitor.Dns method), 43
load() (f5.bigip.ltm.monitor.External method), 45
load() (f5.bigip.ltm.monitor.Firepass method), 47
load() (f5.bigip.ltm.monitor.Ftp method), 49
load() (f5.bigip.ltm.monitor.Gateway_Icmp method), 52
load() (f5.bigip.ltm.monitor.Http method), 36
load() (f5.bigip.ltm.monitor.HttpS method), 38
load() (f5.bigip.ltm.monitor.Icmp method), 54
load() (f5.bigip.ltm.monitor.Imap method), 56
load() (f5.bigip.ltm.monitor.Inband method), 58
load() (f5.bigip.ltm.monitor.Ldap method), 60
load() (f5.bigip.ltm.monitor.Module_Score method), 63
load() (f5.bigip.ltm.monitor.Mssql method), 67
load() (f5.bigip.ltm.monitor.Mysql method), 65
load() (f5.bigip.ltm.monitor.Nntp method), 69
load() (f5.bigip.ltm.monitor.NONE method), 71
load() (f5.bigip.ltm.monitor.Oracle method), 74
load() (f5.bigip.ltm.monitor.Pop3 method), 76
load() (f5.bigip.ltm.monitor.Postgresql method), 78
load() (f5.bigip.ltm.monitor.Radius method), 80
load() (f5.bigip.ltm.monitor.Radius_Accounting method),

82
load() (f5.bigip.ltm.monitor.Real_Server method), 85
load() (f5.bigip.ltm.monitor.Rpc method), 87
load() (f5.bigip.ltm.monitor.Sasp method), 89
load() (f5.bigip.ltm.monitor.Scripted method), 91
load() (f5.bigip.ltm.monitor.Sip method), 93
load() (f5.bigip.ltm.monitor.Smb method), 96
load() (f5.bigip.ltm.monitor.Smtp method), 98
load() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
load() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102
load() (f5.bigip.ltm.monitor.Soap method), 104
load() (f5.bigip.ltm.monitor.Tcp method), 107
load() (f5.bigip.ltm.monitor.Tcp_Echo method), 109
load() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
load() (f5.bigip.ltm.monitor.Udp method), 113
load() (f5.bigip.ltm.monitor.Virtual_Location method),

115
load() (f5.bigip.ltm.monitor.Wap method), 118
load() (f5.bigip.ltm.monitor.Wmi method), 120
load() (f5.bigip.ltm.nat.Nat method), 122

234 Index

F5 Python SDK Documentation, Release 0.1.3

load() (f5.bigip.ltm.node.Node method), 125
load() (f5.bigip.ltm.policy.Actions method), 131
load() (f5.bigip.ltm.policy.Conditions method), 134
load() (f5.bigip.ltm.policy.Policy method), 127
load() (f5.bigip.ltm.policy.Rules method), 129
load() (f5.bigip.ltm.pool.Members method), 139
load() (f5.bigip.ltm.pool.Pool method), 136
load() (f5.bigip.ltm.rule.Rule method), 141
load() (f5.bigip.ltm.snat.Snat method), 144
load() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 148
load() (f5.bigip.ltm.snatpool.Snatpool method), 146
load() (f5.bigip.ltm.virtual.Profiles method), 152
load() (f5.bigip.ltm.virtual.Virtual method), 151
load() (f5.bigip.ltm.virtual_address.Virtual_Address

method), 156
load() (f5.bigip.net.arp.Arp method), 158
load() (f5.bigip.net.fdb.Tunnel method), 183
load() (f5.bigip.net.interface.Interface method), 161
load() (f5.bigip.net.route.Route method), 163
load() (f5.bigip.net.route_domain.Route_Domain

method), 165
load() (f5.bigip.net.selfip.Selfip method), 168
load() (f5.bigip.net.tunnels.Gre method), 174
load() (f5.bigip.net.tunnels.Tunnel method), 172
load() (f5.bigip.net.tunnels.Vxlan method), 176
load() (f5.bigip.net.vlan.Interfaces method), 181
load() (f5.bigip.net.vlan.Vlan method), 178
load() (f5.bigip.resource.Resource method), 215
load() (f5.bigip.sys.application.Aplscript method), 192
load() (f5.bigip.sys.application.Customstat method), 194
load() (f5.bigip.sys.application.Service method), 197
load() (f5.bigip.sys.application.Template method), 199
load() (f5.bigip.sys.db.Db method), 201
load() (f5.bigip.sys.ntp.Restrict method), 208
Ltm (class in f5.bigip.ltm), 32

M
MalformedTCLListException, 218
Members (class in f5.bigip.ltm.pool), 138
Members_s (class in f5.bigip.ltm.pool), 137
message (f5.common.iapp_parser.CurlyBraceMismatchException

attribute), 218
message (f5.common.iapp_parser.EmptyTemplateException

attribute), 218
message (f5.common.iapp_parser.MalformedTCLListException

attribute), 219
message (f5.common.iapp_parser.NonextantSectionException

attribute), 218
message (f5.common.iapp_parser.NonextantTemplateNameException

attribute), 218
MissingRequiredCreationParameter, 212
MissingRequiredReadParameter, 212
Module_Score (class in f5.bigip.ltm.monitor), 62

Module_Scores (class in f5.bigip.ltm.monitor), 61
Mssql (class in f5.bigip.ltm.monitor), 66
Mssqls (class in f5.bigip.ltm.monitor), 65
Mysql (class in f5.bigip.ltm.monitor), 64
Mysqls (class in f5.bigip.ltm.monitor), 63

N
Nat (class in f5.bigip.ltm.nat), 122
Nats (class in f5.bigip.ltm.nat), 121
Nntp (class in f5.bigip.ltm.monitor), 68
Nntps (class in f5.bigip.ltm.monitor), 68
Node (class in f5.bigip.ltm.node), 124
Nodes (class in f5.bigip.ltm.node), 123
NONE (class in f5.bigip.ltm.monitor), 71
Nones (class in f5.bigip.ltm.monitor), 70
NonextantSectionException, 218
NonextantTemplateNameException, 218
Ntp (class in f5.bigip.sys.ntp), 205

O
Oracle (class in f5.bigip.ltm.monitor), 73
Oracles (class in f5.bigip.ltm.monitor), 72
OrganizingCollection (class in f5.bigip.resource), 213

P
parse_template() (f5.common.iapp_parser.IappParser

method), 218
PathElement (class in f5.bigip.resource), 212
Performance (class in f5.bigip.sys.performance), 209
Policy (class in f5.bigip.ltm.policy), 126
Policys (class in f5.bigip.ltm.policy), 126
Pool (class in f5.bigip.ltm.pool), 135
Pools (class in f5.bigip.ltm.pool), 135
Pop3 (class in f5.bigip.ltm.monitor), 75
Pop3s (class in f5.bigip.ltm.monitor), 74
Postgresql (class in f5.bigip.ltm.monitor), 77
Postgresqls (class in f5.bigip.ltm.monitor), 76
Profiles (class in f5.bigip.ltm.virtual), 151
Profiles_s (class in f5.bigip.ltm.virtual), 153

R
Radius (class in f5.bigip.ltm.monitor), 79
Radius_Accounting (class in f5.bigip.ltm.monitor), 82
Radius_Accountings (class in f5.bigip.ltm.monitor), 81
Radius_s (class in f5.bigip.ltm.monitor), 79
raw (f5.bigip.BigIP attribute), 21
raw (f5.bigip.cm.Cm attribute), 22
raw (f5.bigip.cm.device.Device attribute), 24
raw (f5.bigip.cm.device.Devices attribute), 23
raw (f5.bigip.cm.device_group.Device_Group attribute),

27
raw (f5.bigip.cm.device_group.Device_Groups attribute),

25

Index 235

F5 Python SDK Documentation, Release 0.1.3

raw (f5.bigip.cm.device_group.Devices attribute), 29
raw (f5.bigip.cm.device_group.Devices_s attribute), 28
raw (f5.bigip.cm.traffic_group.Traffic_Group attribute),

31
raw (f5.bigip.cm.traffic_group.Traffic_Groups attribute),

30
raw (f5.bigip.ltm.Ltm attribute), 32
raw (f5.bigip.ltm.monitor.Diameter attribute), 41
raw (f5.bigip.ltm.monitor.Diameters attribute), 39
raw (f5.bigip.ltm.monitor.Dns attribute), 43
raw (f5.bigip.ltm.monitor.Dns_s attribute), 42
raw (f5.bigip.ltm.monitor.External attribute), 45
raw (f5.bigip.ltm.monitor.Externals attribute), 44
raw (f5.bigip.ltm.monitor.Firepass attribute), 47
raw (f5.bigip.ltm.monitor.Firepass_s attribute), 46
raw (f5.bigip.ltm.monitor.Ftp attribute), 50
raw (f5.bigip.ltm.monitor.Ftps attribute), 48
raw (f5.bigip.ltm.monitor.Gateway_Icmp attribute), 52
raw (f5.bigip.ltm.monitor.Gateway_Icmps attribute), 50
raw (f5.bigip.ltm.monitor.Http attribute), 36
raw (f5.bigip.ltm.monitor.HttpS attribute), 39
raw (f5.bigip.ltm.monitor.Https attribute), 35
raw (f5.bigip.ltm.monitor.Https_s attribute), 37
raw (f5.bigip.ltm.monitor.Icmp attribute), 54
raw (f5.bigip.ltm.monitor.Icmps attribute), 53
raw (f5.bigip.ltm.monitor.Imap attribute), 56
raw (f5.bigip.ltm.monitor.Imaps attribute), 55
raw (f5.bigip.ltm.monitor.Inband attribute), 58
raw (f5.bigip.ltm.monitor.Inbands attribute), 57
raw (f5.bigip.ltm.monitor.Ldap attribute), 61
raw (f5.bigip.ltm.monitor.Ldaps attribute), 59
raw (f5.bigip.ltm.monitor.Module_Score attribute), 63
raw (f5.bigip.ltm.monitor.Module_Scores attribute), 61
raw (f5.bigip.ltm.monitor.Mssql attribute), 67
raw (f5.bigip.ltm.monitor.Mssqls attribute), 66
raw (f5.bigip.ltm.monitor.Mysql attribute), 65
raw (f5.bigip.ltm.monitor.Mysqls attribute), 64
raw (f5.bigip.ltm.monitor.Nntp attribute), 69
raw (f5.bigip.ltm.monitor.Nntps attribute), 68
raw (f5.bigip.ltm.monitor.NONE attribute), 72
raw (f5.bigip.ltm.monitor.Nones attribute), 70
raw (f5.bigip.ltm.monitor.Oracle attribute), 74
raw (f5.bigip.ltm.monitor.Oracles attribute), 72
raw (f5.bigip.ltm.monitor.Pop3 attribute), 76
raw (f5.bigip.ltm.monitor.Pop3s attribute), 75
raw (f5.bigip.ltm.monitor.Postgresql attribute), 78
raw (f5.bigip.ltm.monitor.Postgresqls attribute), 77
raw (f5.bigip.ltm.monitor.Radius attribute), 80
raw (f5.bigip.ltm.monitor.Radius_Accounting attribute),

83
raw (f5.bigip.ltm.monitor.Radius_Accountings attribute),

81
raw (f5.bigip.ltm.monitor.Radius_s attribute), 79
raw (f5.bigip.ltm.monitor.Real_Server attribute), 85

raw (f5.bigip.ltm.monitor.Real_Servers attribute), 83
raw (f5.bigip.ltm.monitor.Rpc attribute), 87
raw (f5.bigip.ltm.monitor.Rpcs attribute), 86
raw (f5.bigip.ltm.monitor.Sasp attribute), 89
raw (f5.bigip.ltm.monitor.Sasps attribute), 88
raw (f5.bigip.ltm.monitor.Scripted attribute), 91
raw (f5.bigip.ltm.monitor.Scripteds attribute), 90
raw (f5.bigip.ltm.monitor.Sip attribute), 94
raw (f5.bigip.ltm.monitor.Sips attribute), 92
raw (f5.bigip.ltm.monitor.Smb attribute), 96
raw (f5.bigip.ltm.monitor.Smbs attribute), 94
raw (f5.bigip.ltm.monitor.Smtp attribute), 98
raw (f5.bigip.ltm.monitor.Smtps attribute), 97
raw (f5.bigip.ltm.monitor.Snmp_Dca attribute), 100
raw (f5.bigip.ltm.monitor.Snmp_Dca_Base attribute),

102
raw (f5.bigip.ltm.monitor.Snmp_Dca_Bases attribute),

101
raw (f5.bigip.ltm.monitor.Snmp_Dcas attribute), 99
raw (f5.bigip.ltm.monitor.Soap attribute), 105
raw (f5.bigip.ltm.monitor.Soaps attribute), 103
raw (f5.bigip.ltm.monitor.Tcp attribute), 107
raw (f5.bigip.ltm.monitor.Tcp_Echo attribute), 109
raw (f5.bigip.ltm.monitor.Tcp_Echos attribute), 108
raw (f5.bigip.ltm.monitor.Tcp_Half_Open attribute), 111
raw (f5.bigip.ltm.monitor.Tcp_Half_Opens attribute),

110
raw (f5.bigip.ltm.monitor.Tcps attribute), 105
raw (f5.bigip.ltm.monitor.Udp attribute), 113
raw (f5.bigip.ltm.monitor.Udps attribute), 112
raw (f5.bigip.ltm.monitor.Virtual_Location attribute), 116
raw (f5.bigip.ltm.monitor.Virtual_Locations attribute),

114
raw (f5.bigip.ltm.monitor.Wap attribute), 118
raw (f5.bigip.ltm.monitor.Waps attribute), 116
raw (f5.bigip.ltm.monitor.Wmi attribute), 120
raw (f5.bigip.ltm.monitor.Wmis attribute), 119
raw (f5.bigip.ltm.nat.Nat attribute), 122
raw (f5.bigip.ltm.nat.Nats attribute), 121
raw (f5.bigip.ltm.node.Node attribute), 125
raw (f5.bigip.ltm.node.Nodes attribute), 123
raw (f5.bigip.ltm.policy.Actions attribute), 132
raw (f5.bigip.ltm.policy.Actions_s attribute), 130
raw (f5.bigip.ltm.policy.Conditions attribute), 134
raw (f5.bigip.ltm.policy.Conditions_s attribute), 133
raw (f5.bigip.ltm.policy.Policy attribute), 127
raw (f5.bigip.ltm.policy.Policys attribute), 126
raw (f5.bigip.ltm.policy.Rules attribute), 129
raw (f5.bigip.ltm.policy.Rules_s attribute), 128
raw (f5.bigip.ltm.pool.Members attribute), 139
raw (f5.bigip.ltm.pool.Members_s attribute), 137
raw (f5.bigip.ltm.pool.Pool attribute), 136
raw (f5.bigip.ltm.pool.Pools attribute), 135
raw (f5.bigip.ltm.rule.Rule attribute), 141

236 Index

F5 Python SDK Documentation, Release 0.1.3

raw (f5.bigip.ltm.rule.Rules attribute), 140
raw (f5.bigip.ltm.snat.Snat attribute), 144
raw (f5.bigip.ltm.snat.Snats attribute), 142
raw (f5.bigip.ltm.snat_translation.Snat_Translation at-

tribute), 149
raw (f5.bigip.ltm.snat_translation.Snat_Translations at-

tribute), 147
raw (f5.bigip.ltm.snatpool.Snatpool attribute), 146
raw (f5.bigip.ltm.snatpool.Snatpools attribute), 145
raw (f5.bigip.ltm.virtual.Profiles attribute), 152
raw (f5.bigip.ltm.virtual.Profiles_s attribute), 153
raw (f5.bigip.ltm.virtual.Virtual attribute), 151
raw (f5.bigip.ltm.virtual.Virtuals attribute), 150
raw (f5.bigip.ltm.virtual_address.Virtual_Address at-

tribute), 156
raw (f5.bigip.ltm.virtual_address.Virtual_Address_s at-

tribute), 154
raw (f5.bigip.net.arp.Arp attribute), 159
raw (f5.bigip.net.arp.Arps attribute), 157
raw (f5.bigip.net.fdb.Fdbs attribute), 182
raw (f5.bigip.net.fdb.Tunnel attribute), 183
raw (f5.bigip.net.fdb.Tunnels attribute), 184
raw (f5.bigip.net.fdb.Vlans attribute), 185
raw (f5.bigip.net.interface.Interface attribute), 161
raw (f5.bigip.net.interface.Interfaces attribute), 160
raw (f5.bigip.net.route.Route attribute), 163
raw (f5.bigip.net.route.Routes attribute), 162
raw (f5.bigip.net.route_domain.Route_Domain attribute),

166
raw (f5.bigip.net.route_domain.Route_Domains at-

tribute), 164
raw (f5.bigip.net.selfip.Selfip attribute), 168
raw (f5.bigip.net.selfip.Selfips attribute), 167
raw (f5.bigip.net.tunnels.Gre attribute), 174
raw (f5.bigip.net.tunnels.Gres attribute), 173
raw (f5.bigip.net.tunnels.Tunnel attribute), 172
raw (f5.bigip.net.tunnels.Tunnels attribute), 170
raw (f5.bigip.net.tunnels.Tunnels_s attribute), 170
raw (f5.bigip.net.tunnels.Vxlan attribute), 176
raw (f5.bigip.net.tunnels.Vxlans attribute), 175
raw (f5.bigip.net.vlan.Interfaces attribute), 181
raw (f5.bigip.net.vlan.Interfaces_s attribute), 180
raw (f5.bigip.net.vlan.Vlan attribute), 179
raw (f5.bigip.net.vlan.Vlans attribute), 177
raw (f5.bigip.resource.Collection attribute), 215
raw (f5.bigip.resource.OrganizingCollection attribute),

214
raw (f5.bigip.resource.PathElement attribute), 212
raw (f5.bigip.resource.Resource attribute), 216
raw (f5.bigip.resource.ResourceBase attribute), 213
raw (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

attribute), 187
raw (f5.bigip.shared.licensing.Activation attribute), 188
raw (f5.bigip.shared.licensing.Licensing attribute), 187

raw (f5.bigip.shared.licensing.Registration attribute), 189
raw (f5.bigip.sys.application.Aplscript attribute), 192
raw (f5.bigip.sys.application.Aplscripts attribute), 191
raw (f5.bigip.sys.application.Applications attribute), 190
raw (f5.bigip.sys.application.Customstat attribute), 195
raw (f5.bigip.sys.application.Customstats attribute), 193
raw (f5.bigip.sys.application.Service attribute), 197
raw (f5.bigip.sys.application.Services attribute), 195
raw (f5.bigip.sys.application.Template attribute), 199
raw (f5.bigip.sys.application.Templates attribute), 198
raw (f5.bigip.sys.db.Db attribute), 201
raw (f5.bigip.sys.db.Dbs attribute), 200
raw (f5.bigip.sys.failover.Failover attribute), 203
raw (f5.bigip.sys.folder.Folders attribute), 204
raw (f5.bigip.sys.global_settings.Global_Settings at-

tribute), 205
raw (f5.bigip.sys.ntp.Ntp attribute), 206
raw (f5.bigip.sys.ntp.Restrict attribute), 208
raw (f5.bigip.sys.ntp.Restricts attribute), 207
raw (f5.bigip.sys.performance.All_Stats attribute), 210
raw (f5.bigip.sys.performance.Performance attribute),

209
Real_Server (class in f5.bigip.ltm.monitor), 84
Real_Servers (class in f5.bigip.ltm.monitor), 83
refresh() (f5.bigip.BigIP method), 21
refresh() (f5.bigip.cm.Cm method), 22
refresh() (f5.bigip.cm.device.Device method), 24
refresh() (f5.bigip.cm.device.Devices method), 23
refresh() (f5.bigip.cm.device_group.Device_Group

method), 27
refresh() (f5.bigip.cm.device_group.Device_Groups

method), 25
refresh() (f5.bigip.cm.device_group.Devices method), 29
refresh() (f5.bigip.cm.device_group.Devices_s method),

28
refresh() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
refresh() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
refresh() (f5.bigip.ltm.Ltm method), 33
refresh() (f5.bigip.ltm.monitor.Diameter method), 41
refresh() (f5.bigip.ltm.monitor.Diameters method), 40
refresh() (f5.bigip.ltm.monitor.Dns method), 43
refresh() (f5.bigip.ltm.monitor.Dns_s method), 42
refresh() (f5.bigip.ltm.monitor.External method), 45
refresh() (f5.bigip.ltm.monitor.Externals method), 44
refresh() (f5.bigip.ltm.monitor.Firepass method), 47
refresh() (f5.bigip.ltm.monitor.Firepass_s method), 46
refresh() (f5.bigip.ltm.monitor.Ftp method), 50
refresh() (f5.bigip.ltm.monitor.Ftps method), 48
refresh() (f5.bigip.ltm.monitor.Gateway_Icmp method),

52
refresh() (f5.bigip.ltm.monitor.Gateway_Icmps method),

51

Index 237

F5 Python SDK Documentation, Release 0.1.3

refresh() (f5.bigip.ltm.monitor.Http method), 36
refresh() (f5.bigip.ltm.monitor.HttpS method), 39
refresh() (f5.bigip.ltm.monitor.Https method), 35
refresh() (f5.bigip.ltm.monitor.Https_s method), 37
refresh() (f5.bigip.ltm.monitor.Icmp method), 54
refresh() (f5.bigip.ltm.monitor.Icmps method), 53
refresh() (f5.bigip.ltm.monitor.Imap method), 56
refresh() (f5.bigip.ltm.monitor.Imaps method), 55
refresh() (f5.bigip.ltm.monitor.Inband method), 58
refresh() (f5.bigip.ltm.monitor.Inbands method), 57
refresh() (f5.bigip.ltm.monitor.Ldap method), 61
refresh() (f5.bigip.ltm.monitor.Ldaps method), 59
refresh() (f5.bigip.ltm.monitor.Module_Score method),

63
refresh() (f5.bigip.ltm.monitor.Module_Scores method),

62
refresh() (f5.bigip.ltm.monitor.Mssql method), 67
refresh() (f5.bigip.ltm.monitor.Mssqls method), 66
refresh() (f5.bigip.ltm.monitor.Mysql method), 65
refresh() (f5.bigip.ltm.monitor.Mysqls method), 64
refresh() (f5.bigip.ltm.monitor.Nntp method), 69
refresh() (f5.bigip.ltm.monitor.Nntps method), 68
refresh() (f5.bigip.ltm.monitor.NONE method), 72
refresh() (f5.bigip.ltm.monitor.Nones method), 70
refresh() (f5.bigip.ltm.monitor.Oracle method), 74
refresh() (f5.bigip.ltm.monitor.Oracles method), 73
refresh() (f5.bigip.ltm.monitor.Pop3 method), 76
refresh() (f5.bigip.ltm.monitor.Pop3s method), 75
refresh() (f5.bigip.ltm.monitor.Postgresql method), 78
refresh() (f5.bigip.ltm.monitor.Postgresqls method), 77
refresh() (f5.bigip.ltm.monitor.Radius method), 80
refresh() (f5.bigip.ltm.monitor.Radius_Accounting

method), 83
refresh() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
refresh() (f5.bigip.ltm.monitor.Radius_s method), 79
refresh() (f5.bigip.ltm.monitor.Real_Server method), 85
refresh() (f5.bigip.ltm.monitor.Real_Servers method), 84
refresh() (f5.bigip.ltm.monitor.Rpc method), 87
refresh() (f5.bigip.ltm.monitor.Rpcs method), 86
refresh() (f5.bigip.ltm.monitor.Sasp method), 89
refresh() (f5.bigip.ltm.monitor.Sasps method), 88
refresh() (f5.bigip.ltm.monitor.Scripted method), 91
refresh() (f5.bigip.ltm.monitor.Scripteds method), 90
refresh() (f5.bigip.ltm.monitor.Sip method), 94
refresh() (f5.bigip.ltm.monitor.Sips method), 92
refresh() (f5.bigip.ltm.monitor.Smb method), 96
refresh() (f5.bigip.ltm.monitor.Smbs method), 95
refresh() (f5.bigip.ltm.monitor.Smtp method), 98
refresh() (f5.bigip.ltm.monitor.Smtps method), 97
refresh() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
refresh() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102

refresh() (f5.bigip.ltm.monitor.Snmp_Dca_Bases
method), 101

refresh() (f5.bigip.ltm.monitor.Snmp_Dcas method), 99
refresh() (f5.bigip.ltm.monitor.Soap method), 105
refresh() (f5.bigip.ltm.monitor.Soaps method), 103
refresh() (f5.bigip.ltm.monitor.Tcp method), 107
refresh() (f5.bigip.ltm.monitor.Tcp_Echo method), 109
refresh() (f5.bigip.ltm.monitor.Tcp_Echos method), 108
refresh() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
refresh() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

110
refresh() (f5.bigip.ltm.monitor.Tcps method), 106
refresh() (f5.bigip.ltm.monitor.Udp method), 113
refresh() (f5.bigip.ltm.monitor.Udps method), 112
refresh() (f5.bigip.ltm.monitor.Virtual_Location method),

116
refresh() (f5.bigip.ltm.monitor.Virtual_Locations

method), 114
refresh() (f5.bigip.ltm.monitor.Wap method), 118
refresh() (f5.bigip.ltm.monitor.Waps method), 117
refresh() (f5.bigip.ltm.monitor.Wmi method), 120
refresh() (f5.bigip.ltm.monitor.Wmis method), 119
refresh() (f5.bigip.ltm.nat.Nat method), 123
refresh() (f5.bigip.ltm.nat.Nats method), 121
refresh() (f5.bigip.ltm.node.Node method), 125
refresh() (f5.bigip.ltm.node.Nodes method), 124
refresh() (f5.bigip.ltm.policy.Actions method), 132
refresh() (f5.bigip.ltm.policy.Actions_s method), 130
refresh() (f5.bigip.ltm.policy.Conditions method), 134
refresh() (f5.bigip.ltm.policy.Conditions_s method), 133
refresh() (f5.bigip.ltm.policy.Policy method), 127
refresh() (f5.bigip.ltm.policy.Policys method), 126
refresh() (f5.bigip.ltm.policy.Rules method), 130
refresh() (f5.bigip.ltm.policy.Rules_s method), 128
refresh() (f5.bigip.ltm.pool.Members method), 139
refresh() (f5.bigip.ltm.pool.Members_s method), 137
refresh() (f5.bigip.ltm.pool.Pool method), 136
refresh() (f5.bigip.ltm.pool.Pools method), 135
refresh() (f5.bigip.ltm.rule.Rule method), 141
refresh() (f5.bigip.ltm.rule.Rules method), 140
refresh() (f5.bigip.ltm.snat.Snat method), 144
refresh() (f5.bigip.ltm.snat.Snats method), 142
refresh() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 149
refresh() (f5.bigip.ltm.snat_translation.Snat_Translations

method), 147
refresh() (f5.bigip.ltm.snatpool.Snatpool method), 146
refresh() (f5.bigip.ltm.snatpool.Snatpools method), 145
refresh() (f5.bigip.ltm.virtual.Profiles method), 153
refresh() (f5.bigip.ltm.virtual.Profiles_s method), 153
refresh() (f5.bigip.ltm.virtual.Virtual method), 151
refresh() (f5.bigip.ltm.virtual.Virtuals method), 150

238 Index

F5 Python SDK Documentation, Release 0.1.3

refresh() (f5.bigip.ltm.virtual_address.Virtual_Address
method), 156

refresh() (f5.bigip.ltm.virtual_address.Virtual_Address_s
method), 155

refresh() (f5.bigip.net.arp.Arp method), 159
refresh() (f5.bigip.net.arp.Arps method), 157
refresh() (f5.bigip.net.fdb.Fdbs method), 182
refresh() (f5.bigip.net.fdb.Tunnel method), 183
refresh() (f5.bigip.net.fdb.Tunnels method), 184
refresh() (f5.bigip.net.fdb.Vlans method), 185
refresh() (f5.bigip.net.interface.Interface method), 161
refresh() (f5.bigip.net.interface.Interfaces method), 160
refresh() (f5.bigip.net.route.Route method), 163
refresh() (f5.bigip.net.route.Routes method), 162
refresh() (f5.bigip.net.route_domain.Route_Domain

method), 166
refresh() (f5.bigip.net.route_domain.Route_Domains

method), 164
refresh() (f5.bigip.net.selfip.Selfip method), 169
refresh() (f5.bigip.net.selfip.Selfips method), 167
refresh() (f5.bigip.net.tunnels.Gre method), 174
refresh() (f5.bigip.net.tunnels.Gres method), 173
refresh() (f5.bigip.net.tunnels.Tunnel method), 172
refresh() (f5.bigip.net.tunnels.Tunnels method), 171
refresh() (f5.bigip.net.tunnels.Tunnels_s method), 170
refresh() (f5.bigip.net.tunnels.Vxlan method), 176
refresh() (f5.bigip.net.tunnels.Vxlans method), 175
refresh() (f5.bigip.net.vlan.Interfaces method), 181
refresh() (f5.bigip.net.vlan.Interfaces_s method), 180
refresh() (f5.bigip.net.vlan.Vlan method), 179
refresh() (f5.bigip.net.vlan.Vlans method), 177
refresh() (f5.bigip.resource.Collection method), 215
refresh() (f5.bigip.resource.OrganizingCollection

method), 214
refresh() (f5.bigip.resource.Resource method), 216
refresh() (f5.bigip.resource.ResourceBase method), 213
refresh() (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

method), 187
refresh() (f5.bigip.shared.licensing.Activation method),

188
refresh() (f5.bigip.shared.licensing.Registration method),

189
refresh() (f5.bigip.sys.application.Aplscript method), 192
refresh() (f5.bigip.sys.application.Aplscripts method),

191
refresh() (f5.bigip.sys.application.Applications method),

190
refresh() (f5.bigip.sys.application.Customstat method),

195
refresh() (f5.bigip.sys.application.Customstats method),

193
refresh() (f5.bigip.sys.application.Service method), 197
refresh() (f5.bigip.sys.application.Services method), 196
refresh() (f5.bigip.sys.application.Template method), 199

refresh() (f5.bigip.sys.application.Templates method),
198

refresh() (f5.bigip.sys.db.Db method), 201
refresh() (f5.bigip.sys.db.Dbs method), 200
refresh() (f5.bigip.sys.failover.Failover method), 203
refresh() (f5.bigip.sys.folder.Folders method), 204
refresh() (f5.bigip.sys.global_settings.Global_Settings

method), 205
refresh() (f5.bigip.sys.ntp.Ntp method), 206
refresh() (f5.bigip.sys.ntp.Restrict method), 208
refresh() (f5.bigip.sys.ntp.Restricts method), 207
refresh() (f5.bigip.sys.performance.All_Stats method),

210
refresh() (f5.bigip.sys.performance.Performance

method), 209
Registration (class in f5.bigip.shared.licensing), 188
Resource (class in f5.bigip.resource), 215
ResourceBase (class in f5.bigip.resource), 212
Restrict (class in f5.bigip.sys.ntp), 207
Restricts (class in f5.bigip.sys.ntp), 206
Route (class in f5.bigip.net.route), 162
Route_Domain (class in f5.bigip.net.route_domain), 165
Route_Domains (class in f5.bigip.net.route_domain), 164
Routes (class in f5.bigip.net.route), 161
Rpc (class in f5.bigip.ltm.monitor), 86
Rpcs (class in f5.bigip.ltm.monitor), 85
Rule (class in f5.bigip.ltm.rule), 140
Rules (class in f5.bigip.ltm.policy), 128
Rules (class in f5.bigip.ltm.rule), 139
Rules_s (class in f5.bigip.ltm.policy), 128

S
Sasp (class in f5.bigip.ltm.monitor), 88
Sasps (class in f5.bigip.ltm.monitor), 87
Scripted (class in f5.bigip.ltm.monitor), 90
Scripteds (class in f5.bigip.ltm.monitor), 90
section_map (f5.common.iapp_parser.IappParser at-

tribute), 218
sections_not_required (f5.common.iapp_parser.IappParser

attribute), 218
Selfip (class in f5.bigip.net.selfip), 167
Selfips (class in f5.bigip.net.selfip), 166
Service (class in f5.bigip.sys.application), 196
Services (class in f5.bigip.sys.application), 195
Sip (class in f5.bigip.ltm.monitor), 93
Sips (class in f5.bigip.ltm.monitor), 92
Smb (class in f5.bigip.ltm.monitor), 95
Smbs (class in f5.bigip.ltm.monitor), 94
Smtp (class in f5.bigip.ltm.monitor), 97
Smtps (class in f5.bigip.ltm.monitor), 96
Snat (class in f5.bigip.ltm.snat), 143
Snat_Translation (class in f5.bigip.ltm.snat_translation),

148

Index 239

F5 Python SDK Documentation, Release 0.1.3

Snat_Translations (class in f5.bigip.ltm.snat_translation),
147

Snatpool (class in f5.bigip.ltm.snatpool), 145
Snatpools (class in f5.bigip.ltm.snatpool), 144
Snats (class in f5.bigip.ltm.snat), 142
Snmp_Dca (class in f5.bigip.ltm.monitor), 99
Snmp_Dca_Base (class in f5.bigip.ltm.monitor), 101
Snmp_Dca_Bases (class in f5.bigip.ltm.monitor), 101
Snmp_Dcas (class in f5.bigip.ltm.monitor), 98
Soap (class in f5.bigip.ltm.monitor), 104
Soaps (class in f5.bigip.ltm.monitor), 103
sync() (f5.bigip.cm.Cm method), 22
sync() (f5.bigip.cm.device_group.Device_Group

method), 26

T
tcl_list_for_attr_re (f5.common.iapp_parser.IappParser

attribute), 218
tcl_list_for_section_re (f5.common.iapp_parser.IappParser

attribute), 218
tcl_list_patterns (f5.common.iapp_parser.IappParser at-

tribute), 218
Tcp (class in f5.bigip.ltm.monitor), 106
Tcp_Echo (class in f5.bigip.ltm.monitor), 108
Tcp_Echos (class in f5.bigip.ltm.monitor), 107
Tcp_Half_Open (class in f5.bigip.ltm.monitor), 110
Tcp_Half_Opens (class in f5.bigip.ltm.monitor), 109
Tcps (class in f5.bigip.ltm.monitor), 105
Template (class in f5.bigip.sys.application), 198
template_attrs (f5.common.iapp_parser.IappParser

attribute), 218
template_sections (f5.common.iapp_parser.IappParser at-

tribute), 218
Templates (class in f5.bigip.sys.application), 197
ToDictMixin (class in f5.bigip.mixins), 217
toggle_standby() (f5.bigip.sys.failover.Failover method),

202
Traffic_Group (class in f5.bigip.cm.traffic_group), 30
Traffic_Groups (class in f5.bigip.cm.traffic_group), 30
Tunnel (class in f5.bigip.net.fdb), 182
Tunnel (class in f5.bigip.net.tunnels), 171
Tunnels (class in f5.bigip.net.fdb), 184
Tunnels (class in f5.bigip.net.tunnels), 170
Tunnels_s (class in f5.bigip.net.tunnels), 169

U
Udp (class in f5.bigip.ltm.monitor), 112
Udps (class in f5.bigip.ltm.monitor), 112
UnnamedResourceMixin (class in f5.bigip.mixins), 217
UnregisteredKind, 212
UnsupportedOperation, 212
update() (f5.bigip.BigIP method), 21
update() (f5.bigip.cm.Cm method), 22
update() (f5.bigip.cm.device.Device method), 25

update() (f5.bigip.cm.device.Devices method), 23
update() (f5.bigip.cm.device_group.Device_Group

method), 27
update() (f5.bigip.cm.device_group.Device_Groups

method), 26
update() (f5.bigip.cm.device_group.Devices method), 29
update() (f5.bigip.cm.device_group.Devices_s method),

28
update() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
update() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
update() (f5.bigip.ltm.Ltm method), 33
update() (f5.bigip.ltm.monitor.Diameter method), 41
update() (f5.bigip.ltm.monitor.Diameters method), 40
update() (f5.bigip.ltm.monitor.Dns method), 43
update() (f5.bigip.ltm.monitor.Dns_s method), 42
update() (f5.bigip.ltm.monitor.External method), 45
update() (f5.bigip.ltm.monitor.Externals method), 44
update() (f5.bigip.ltm.monitor.Firepass method), 48
update() (f5.bigip.ltm.monitor.Firepass_s method), 46
update() (f5.bigip.ltm.monitor.Ftp method), 50
update() (f5.bigip.ltm.monitor.Ftps method), 48
update() (f5.bigip.ltm.monitor.Gateway_Icmp method),

52
update() (f5.bigip.ltm.monitor.Gateway_Icmps method),

51
update() (f5.bigip.ltm.monitor.Http method), 37
update() (f5.bigip.ltm.monitor.HttpS method), 39
update() (f5.bigip.ltm.monitor.Https method), 35
update() (f5.bigip.ltm.monitor.Https_s method), 37
update() (f5.bigip.ltm.monitor.Icmp method), 54
update() (f5.bigip.ltm.monitor.Icmps method), 53
update() (f5.bigip.ltm.monitor.Imap method), 56
update() (f5.bigip.ltm.monitor.Imaps method), 55
update() (f5.bigip.ltm.monitor.Inband method), 59
update() (f5.bigip.ltm.monitor.Inbands method), 57
update() (f5.bigip.ltm.monitor.Ldap method), 61
update() (f5.bigip.ltm.monitor.Ldaps method), 59
update() (f5.bigip.ltm.monitor.Module_Score method),

63
update() (f5.bigip.ltm.monitor.Module_Scores method),

62
update() (f5.bigip.ltm.monitor.Mssql method), 67
update() (f5.bigip.ltm.monitor.Mssqls method), 66
update() (f5.bigip.ltm.monitor.Mysql method), 65
update() (f5.bigip.ltm.monitor.Mysqls method), 64
update() (f5.bigip.ltm.monitor.Nntp method), 70
update() (f5.bigip.ltm.monitor.Nntps method), 68
update() (f5.bigip.ltm.monitor.NONE method), 72
update() (f5.bigip.ltm.monitor.Nones method), 70
update() (f5.bigip.ltm.monitor.Oracle method), 74
update() (f5.bigip.ltm.monitor.Oracles method), 73
update() (f5.bigip.ltm.monitor.Pop3 method), 76

240 Index

F5 Python SDK Documentation, Release 0.1.3

update() (f5.bigip.ltm.monitor.Pop3s method), 75
update() (f5.bigip.ltm.monitor.Postgresql method), 78
update() (f5.bigip.ltm.monitor.Postgresqls method), 77
update() (f5.bigip.ltm.monitor.Radius method), 81
update() (f5.bigip.ltm.monitor.Radius_Accounting

method), 83
update() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
update() (f5.bigip.ltm.monitor.Radius_s method), 79
update() (f5.bigip.ltm.monitor.Real_Server method), 84
update() (f5.bigip.ltm.monitor.Real_Servers method), 84
update() (f5.bigip.ltm.monitor.Rpc method), 87
update() (f5.bigip.ltm.monitor.Rpcs method), 86
update() (f5.bigip.ltm.monitor.Sasp method), 89
update() (f5.bigip.ltm.monitor.Sasps method), 88
update() (f5.bigip.ltm.monitor.Scripted method), 92
update() (f5.bigip.ltm.monitor.Scripteds method), 90
update() (f5.bigip.ltm.monitor.Sip method), 94
update() (f5.bigip.ltm.monitor.Sips method), 92
update() (f5.bigip.ltm.monitor.Smb method), 96
update() (f5.bigip.ltm.monitor.Smbs method), 95
update() (f5.bigip.ltm.monitor.Smtp method), 98
update() (f5.bigip.ltm.monitor.Smtps method), 97
update() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
update() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

103
update() (f5.bigip.ltm.monitor.Snmp_Dca_Bases

method), 101
update() (f5.bigip.ltm.monitor.Snmp_Dcas method), 99
update() (f5.bigip.ltm.monitor.Soap method), 105
update() (f5.bigip.ltm.monitor.Soaps method), 103
update() (f5.bigip.ltm.monitor.Tcp method), 107
update() (f5.bigip.ltm.monitor.Tcp_Echo method), 109
update() (f5.bigip.ltm.monitor.Tcp_Echos method), 108
update() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
update() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

110
update() (f5.bigip.ltm.monitor.Tcps method), 106
update() (f5.bigip.ltm.monitor.Udp method), 114
update() (f5.bigip.ltm.monitor.Udps method), 112
update() (f5.bigip.ltm.monitor.Virtual_Location method),

116
update() (f5.bigip.ltm.monitor.Virtual_Locations

method), 114
update() (f5.bigip.ltm.monitor.Wap method), 118
update() (f5.bigip.ltm.monitor.Waps method), 117
update() (f5.bigip.ltm.monitor.Wmi method), 119
update() (f5.bigip.ltm.monitor.Wmis method), 119
update() (f5.bigip.ltm.nat.Nats method), 121
update() (f5.bigip.ltm.node.Node method), 124
update() (f5.bigip.ltm.node.Nodes method), 124
update() (f5.bigip.ltm.policy.Actions method), 132
update() (f5.bigip.ltm.policy.Actions_s method), 131

update() (f5.bigip.ltm.policy.Conditions method), 134
update() (f5.bigip.ltm.policy.Conditions_s method), 133
update() (f5.bigip.ltm.policy.Policy method), 127
update() (f5.bigip.ltm.policy.Policys method), 126
update() (f5.bigip.ltm.policy.Rules method), 130
update() (f5.bigip.ltm.policy.Rules_s method), 128
update() (f5.bigip.ltm.pool.Members method), 138
update() (f5.bigip.ltm.pool.Members_s method), 138
update() (f5.bigip.ltm.pool.Pool method), 137
update() (f5.bigip.ltm.pool.Pools method), 135
update() (f5.bigip.ltm.rule.Rule method), 141
update() (f5.bigip.ltm.rule.Rules method), 140
update() (f5.bigip.ltm.snat.Snat method), 144
update() (f5.bigip.ltm.snat.Snats method), 143
update() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 149
update() (f5.bigip.ltm.snat_translation.Snat_Translations

method), 148
update() (f5.bigip.ltm.snatpool.Snatpool method), 146
update() (f5.bigip.ltm.snatpool.Snatpools method), 145
update() (f5.bigip.ltm.virtual.Profiles method), 153
update() (f5.bigip.ltm.virtual.Profiles_s method), 154
update() (f5.bigip.ltm.virtual.Virtual method), 151
update() (f5.bigip.ltm.virtual.Virtuals method), 150
update() (f5.bigip.ltm.virtual_address.Virtual_Address

method), 156
update() (f5.bigip.ltm.virtual_address.Virtual_Address_s

method), 155
update() (f5.bigip.net.arp.Arp method), 159
update() (f5.bigip.net.arp.Arps method), 158
update() (f5.bigip.net.fdb.Fdbs method), 182
update() (f5.bigip.net.fdb.Tunnel method), 184
update() (f5.bigip.net.fdb.Tunnels method), 185
update() (f5.bigip.net.fdb.Vlans method), 185
update() (f5.bigip.net.interface.Interface method), 161
update() (f5.bigip.net.interface.Interfaces method), 160
update() (f5.bigip.net.route.Route method), 163
update() (f5.bigip.net.route.Routes method), 162
update() (f5.bigip.net.route_domain.Route_Domain

method), 166
update() (f5.bigip.net.route_domain.Route_Domains

method), 165
update() (f5.bigip.net.selfip.Selfip method), 169
update() (f5.bigip.net.selfip.Selfips method), 167
update() (f5.bigip.net.tunnels.Gre method), 174
update() (f5.bigip.net.tunnels.Gres method), 173
update() (f5.bigip.net.tunnels.Tunnel method), 172
update() (f5.bigip.net.tunnels.Tunnels method), 171
update() (f5.bigip.net.tunnels.Tunnels_s method), 170
update() (f5.bigip.net.tunnels.Vxlan method), 176
update() (f5.bigip.net.tunnels.Vxlans method), 175
update() (f5.bigip.net.vlan.Interfaces method), 181
update() (f5.bigip.net.vlan.Interfaces_s method), 180
update() (f5.bigip.net.vlan.Vlan method), 179

Index 241

F5 Python SDK Documentation, Release 0.1.3

update() (f5.bigip.net.vlan.Vlans method), 178
update() (f5.bigip.resource.Collection method), 215
update() (f5.bigip.resource.OrganizingCollection

method), 214
update() (f5.bigip.resource.Resource method), 216
update() (f5.bigip.resource.ResourceBase method), 213
update() (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

method), 186
update() (f5.bigip.shared.licensing.Activation method),

187
update() (f5.bigip.shared.licensing.Registration method),

188
update() (f5.bigip.sys.application.Aplscript method), 193
update() (f5.bigip.sys.application.Aplscripts method),

191
update() (f5.bigip.sys.application.Applications method),

191
update() (f5.bigip.sys.application.Customstat method),

195
update() (f5.bigip.sys.application.Customstats method),

193
update() (f5.bigip.sys.application.Service method), 196
update() (f5.bigip.sys.application.Services method), 196
update() (f5.bigip.sys.application.Template method), 199
update() (f5.bigip.sys.application.Templates method),

198
update() (f5.bigip.sys.db.Db method), 201
update() (f5.bigip.sys.db.Dbs method), 200
update() (f5.bigip.sys.failover.Failover method), 202
update() (f5.bigip.sys.folder.Folders method), 204
update() (f5.bigip.sys.global_settings.Global_Settings

method), 205
update() (f5.bigip.sys.ntp.Ntp method), 206
update() (f5.bigip.sys.ntp.Restrict method), 208
update() (f5.bigip.sys.ntp.Restricts method), 207
update() (f5.bigip.sys.performance.All_Stats method),

209
update() (f5.bigip.sys.performance.Performance method),

209
URICreationCollision, 212

V
Virtual (class in f5.bigip.ltm.virtual), 150
Virtual_Address (class in f5.bigip.ltm.virtual_address),

155
Virtual_Address_s (class in f5.bigip.ltm.virtual_address),

154
Virtual_Location (class in f5.bigip.ltm.monitor), 115
Virtual_Locations (class in f5.bigip.ltm.monitor), 114
Virtuals (class in f5.bigip.ltm.virtual), 149
Vlan (class in f5.bigip.net.vlan), 178
Vlans (class in f5.bigip.net.fdb), 185
Vlans (class in f5.bigip.net.vlan), 177
Vxlan (class in f5.bigip.net.tunnels), 175

Vxlans (class in f5.bigip.net.tunnels), 174

W
Wap (class in f5.bigip.ltm.monitor), 117
Waps (class in f5.bigip.ltm.monitor), 116
Wmi (class in f5.bigip.ltm.monitor), 119
Wmis (class in f5.bigip.ltm.monitor), 118

242 Index

	Introduction
	Quick Start
	Installation
	Basic Example

	Detailed Documentation
	User Guide
	Basic Concepts
	REST URIs
	REST Endpoints
	Dynamic Attributes
	iControl REST kind Parameters
	Methods

	REST API Endpoints
	Overview
	Endpoints

	Python Object Paths
	Organizing Collection
	Collection
	Resource
	Subcollection
	Subcollection Resource

	Coding Example
	Further Reading

	Developer Guide
	f5
	f5 package
	f5.bigip
	f5.common
	f5.sdk_exception

	Copyright
	License
	Apache V2.0
	Contributor License Agreement

	Python Module Index

