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CHAPTER 1

Introduction

This project implements an object model based SDK for the F5 Networks® BIG-IP® iControl® REST interface.
Users of this library can create, edit, update, and delete configuration objects on a BIG-IP®. For more information on
the basic principals that the SDK uses, see the User Guide.
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CHAPTER 2

Quick Start

2.1 Installation

$> pip install f5-sdk

Note: If you are using a pre-release version you must use the --pre option with the pip command.

2.2 Basic Example

from f5.bigip import BigIP

# Connect to the BigIP
bigip = BigIP("bigip.example.com", "admin", "somepassword")

# Get a list of all pools on the BigIP and print their name and their
# members' name
pools = bigip.ltm.pools.get_collection()
for pool in pools:

print pool.name
for member in pool.members_s.get_collection():

print member.name

# Create a new pool on the BigIP
mypool = bigip.ltm.pools.pool.create(name='mypool', partition='Common')

# Load an existing pool and update its description
pool_a = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_a.description = "New description"
pool_a.update()

# Delete a pool if it exists
if bigip.ltm.pools.pool.exists(name='mypool', partition='Common'):

pool_b = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_b.delete()

3
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CHAPTER 3

Detailed Documentation

3.1 User Guide

To get the most out of using our SDK, it’s useful to understand the basic concepts and principals we used when we
designed it. It is also important that you are familiar with the F5® BIG-IP® and, at a minimum, how to configure
BIG-IP® using the configuration utility (the GUI). More useful still would be if you are already familiar with the
iControl® REST API.

3.1.1 Basic Concepts

Familiarizing yourself with the following underlying basic concepts will help you get up and running with the SDK.

Important: When using the SDK, you’ll notice that collection objects are referenced using the plural version of the
Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to
the name when referring to the collection.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

• LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path
f5.bigip.pools.get_collection().

• Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via
f5.bigip.net.tunnels_s.get_collection().

REST URIs

You can directly infer REST URIs from the python expressions, and vice versa.

5
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Examples

Expression: bigip = BigIP('a', 'b', 'c')
URI Returned: https://a/mgmt/tm/

Expression: bigip.ltm
URI Returned: https://a/mgmt/tm/ltm/

Expression: pools1 = bigip.ltm.pools
URI Returned: https://a/mgmt/tm/ltm/pool

Expression: pool_a = pools1.create(partition="Common", name="foo")
URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

REST Endpoints

A set of basic REST endpoints can be derived from the object’s URI and kind (listed below).

• Organizing Collection

• Collection

• Resource

• Subcollection

• Subcollection Resource

Dynamic Attributes

The python object’s attribute can be created dynamically based on the JSON returned when querying the REST API.

iControl REST kind Parameters

Almost all iControl REST API entries contain a parameter named kind. This parameter provides information about
the object that lets you know what you should expect to follow it. The iControl REST API uses three types of kind:
collectionstate, state, and stats.

kind Associated Objects Methods
collectionstateOrganizingCollection,

Collection
exists()

state Resource create(), update(), refresh(), delete(),
load(), exists()

stats Resource refresh(), load(), exists()

6 Chapter 3. Detailed Documentation
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Methods

Method HTTP Command Action(s)
create() POST

creates a new resource on the device
with its own URI

update() PUT

submits a new configuration to the
device resource; sets the
Resource attributes to the state
reported by the device

refresh() GET

obtains the state of a device
resource; sets the representing
Python Resource Object; tracks
device state via its attributes

delete() DELETE

removes the resource from the
device, sets self.__dict__
to {’deleted’: True}

load() GET

obtains the state of an existing
resource on the device; sets
the Resource attributes to match that
state

exists() GET

checks for the existence of a named
object on the BIG-IP®

Note: Available methods are restricted according to the object’s kind.

3.1.2 REST API Endpoints

Overview

REST URI Segments

We’ll start exploring the iControl REST API’s endpoints with an example detailing how the endpoint types map to the
different parts of the URI. The different types of resources used by the SDK shown in the example are explained in
detail later in this guide.

Example: The URI below returns the JSON for an LTM pool member.

3.1. User Guide 7
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http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
|-------|---|----|--------------|-------|-------------|

OC OC Coll Resource SC SubColl Resrc

OC Organizing Collection
Coll Collection
Resource Resource
SC Subcollection
SubColl Resrc Subcollection Resource

Endpoints

Organizing Collection

kind: collectionstate

The iControl REST User Guide defines an organizing collection as a URI that designates all of the tmsh subordinate
modules and components in the specified module. Organizing collections, which appear directly under f5.bigip,
correspond to the various modules available on the BIG-IP® (for example, f5.bigip.ltm).

The organizing collection names correspond to the items that appear in the drawers on the left-hand side of the BIG-
IP® configuration utility (the GUI). The module names are abbreviated in the REST API, but the mapping is otherwise
pretty straightforward. For example, the SDK module f5.bigip.sys maps to the System drawer in the GUI.

OrganizingCollection objects do not have configuration parameters. As shown in the example below, the
JSON blob received in response to an HTTP GET for an organizing collection object contains an items parameter
with a list of references to Collection and Resource objects.

Example

{
"kind":"tm:ltm:ltmcollectionstate",
"selfLink":"https://localhost/mgmt/tm/ltm?ver=11.5.0",
"items":[

{
"reference":{
"link":"https://../mgmt/tm/ltm/auth?ver=11.5.0"
}
},
{
"reference":{
"link":"https://../mgmt/tm/ltm/classification?ver=11.5.0"
}
},

]
}

Collection

kind: collectionstate

A collection is similar to an Organizing Collection in that no configurations can be applied to it. A collection differs
from an organizing collection in that a collection only contains references to objects of the same type in its items
parameter.

8 Chapter 3. Detailed Documentation

https://devcentral.f5.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160


F5 Python SDK Documentation, Release 0.1.3

Important: When using the SDK, you’ll notice that collection objects are referenced using the plural version of the
Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to
the name when referring to the collection.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

• LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path
f5.bigip.pools.get_collection().

• Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via
f5.bigip.net.tunnels_s.get_collection().

You can use get_collection() to get a list of the objects in the collection.

The example below shows the JSON you would get back from a REST collection endpoint. Note that it contains an
items attribute that contains Resource objects (we know the objects are resources because their kind ends in
state).

3.1. User Guide 9
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Example

{
kind: "tm:ltm:pool:poolcollectionstate",
selfLink: "https://localhost/mgmt/tm/ltm/pool?ver=11.6.0",
items: [

{
kind: "tm:ltm:pool:poolstate",
name: "my_newpool",
partition: "Common",
fullPath: "/Common/my_newpool",
generation: 76,
selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool?ver=11.6.0",
allowNat: "yes",
allowSnat: "yes",
description: "This is my pool",
ignorePersistedWeight: "disabled",
ipTosToClient: "pass-through",
ipTosToServer: "pass-through",
linkQosToClient: "pass-through",
linkQosToServer: "pass-through",
loadBalancingMode: "round-robin",
minActiveMembers: 0,
minUpMembers: 0,
minUpMembersAction: "failover",
minUpMembersChecking: "disabled",
queueDepthLimit: 0,
queueOnConnectionLimit: "disabled",
queueTimeLimit: 0,
reselectTries: 0,
serviceDownAction: "none",
slowRampTime: 10,
membersReference: {
link: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool/members?ver=11.6.0",
isSubcollection: true
}

},
{

kind: "tm:ltm:pool:poolstate",
name: "mypool",
partition: "Common",
fullPath: "/Common/mypool",
generation: 121,
selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0",
allowNat: "yes",
allowSnat: "yes",
ignorePersistedWeight: "disabled",
ipTosToClient: "pass-through",
ipTosToServer: "pass-through",
linkQosToClient: "pass-through",
linkQosToServer: "pass-through",
loadBalancingMode: "round-robin",
minActiveMembers: 0,
minUpMembers: 0,
minUpMembersAction: "failover",
minUpMembersChecking: "disabled",
queueDepthLimit: 0,
queueOnConnectionLimit: "disabled",
queueTimeLimit: 0,
reselectTries: 0,
serviceDownAction: "none",
slowRampTime: 10,
membersReference: {
link: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0",
isSubcollection: true
}

},
]

}

10 Chapter 3. Detailed Documentation
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Resource

kind: state

A resource is a fully configurable object for which the CURDLE methods are supported.

• create()

• refresh()

• update()

• delete()

• load()

• exists()

When using the SDK, you will notice that resources are instantiated via their collection. Once created or loaded,
resources contain attributes that map to the JSON fields returned by the BIG-IP®.

Example

To load a f5.bigip.ltm.node.Node object, you would use the following code.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> n = bigip.ltm.nodes.node.load(partition='Common', name='192.168.15.15')
>>> print n.raw
{

"kind":"tm:ltm:node:nodestate",
"name":"192.168.15.15",
"partition":"Common",
"fullPath":"/Common/192.168.15.15",
"generation":16684,
"selfLink":"https://localhost/mgmt/tm/ltm/node/~Common~192.168.15.15?ver=11.6.0",
"address":"192.168.15.15",
"connectionLimit":0,
"dynamicRatio":1,
"ephemeral":"false",
"fqdn":{

"addressFamily":"ipv4",
"autopopulate":"disabled",
"downInterval":5,
"interval":3600

},
"logging":"disabled",
"monitor":"default",
"rateLimit":"disabled",
"ratio":1,
"session":"user-enabled",
"state":"unchecked"

}

The output of the f5.bigip.ltm.node.Node.raw shows all of the available attributes.
Once you have loaded the object, you can access the attributes as shown below.

>>> n.fqdn['downInterval'] = 10
>>> n.logging = 'enabled'
>>> n.update()

3.1. User Guide 11
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Subcollection

kind: collectionstate

A subcollection is a Collection that’s attached to a higher-level Resource object. Subcollections are almost
exactly the same as collections; the exception is that they can only be accessed via the resource they’re attached to
(the ‘parent’ resource). A subcollection can be identified by the value isSubcollection: true, followed by
an items attribute listing the subcollection’s resources. Just as with collections, you can use get_collection()
to get a list of the resources in the subcollection.

Example

A pool resource has a members_s subcollection attached to it; you must create or load the ‘parent’ resource
(pool) before you can access the subcollection (members_s).

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> members = pool.members_s.get_collection()

Note: In the above example, the subcollection object – members_s – ends in _s because the subcollection resource
object name (members) is already plural.

The JSON returned for a pool with one member is shown below. Note the highlighted rows, which indicate the
subcollection.

12 Chapter 3. Detailed Documentation
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Example

{
"kind": "tm:ltm:pool:poolstate",
"name": "p1",
"partition": "Common",
"fullPath": "/Common/p1",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1?expandSubcollections=true&ver=11.6.0",
"allowNat": "yes",
"allowSnat": "yes",
"ignorePersistedWeight": "disabled",
"ipTosToClient": "pass-through",
"ipTosToServer": "pass-through",
"linkQosToClient": "pass-through",
"linkQosToServer": "pass-through",
"loadBalancingMode": "round-robin",
"minActiveMembers": 0,
"minUpMembers": 0,
"minUpMembersAction": "failover",
"minUpMembersChecking": "disabled",
"queueDepthLimit": 0,
"queueOnConnectionLimit": "disabled",
"queueTimeLimit": 0,
"reselectTries": 0,
"serviceDownAction": "none",
"slowRampTime": 10,
"membersReference": {

"link": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members?ver=11.6.0",
"isSubcollection": true,
"items": [

{
"kind": "tm:ltm:pool:members:membersstate",
"name": "n1:80",
"partition": "Common",
"fullPath": "/Common/n1:80",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
"address": "192.168.51.51",
"connectionLimit": 0,
"dynamicRatio": 1,
"ephemeral": "false",
"fqdn": {
"autopopulate": "disabled",

}
"inheritProfile": "enabled",
"logging": "disabled",
"monitor": "default",
"priorityGroup": 0,
"rateLimit": "disabled",
"ratio": 1,
"session": "user-enabled",
"state": "unchecked",

}
]

},
}

3.1. User Guide 13
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Subcollection Resource

kind: state

A subcollection resource is essentially the same as a resource. As with collections and subcollections, the only
difference between the two is that you must access the subcollection resource via the subcollection attached to the
main resource.

Example

To build on the subcollection example: pool is the resource, members_s is the subcollection, and members
(the actual pool member) is the subcollection resource.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> member = pool.members_s.members.load(partition='Common', name='n1:80')

The JSON below shows a f5.bigip.ltm.pool.members_s.members object.

{
"kind": "tm:ltm:pool:members:membersstate",
"name": "n1:80",
"partition": "Common",
"fullPath": "/Common/n1:80",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
"address": "192.168.51.51",
"connectionLimit": 0,
"dynamicRatio": 1,
"ephemeral": "false",
"fqdn": {

"autopopulate": "disabled",
}
"inheritProfile": "enabled",
"logging": "disabled",
"monitor": "default",
"priorityGroup": 0,
"rateLimit": "disabled",
"ratio": 1,
"session": "user-enabled",
"state": "unchecked",

}

Tip: It’s easy to tell that this is a Resource object because the kind is state, not collectionstate.

3.1.3 Python Object Paths

The object classes used in the SDK directly correspond to the REST endpoints you’d use to access the objects via the
API. Remembering the patterns below will help you easily derive an SDK object class from an object URI.

1. Objects take the form f5.<product>.<organizing_collection>.<collection>.<resource>.<subcollection>.<resource>.

2. The collection and the resource generally have the same name, so the collection is the plural version of the
resource. This means that you add s to the end of the resource to get the collection, unless the resource already
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ends in s. If the resource is already plural, add _s to get the collection.

3. The object itself is accessed by its CamelCase name, but the usage of the object is all lowercase.

4. The characters . and - are always replaced with _ in the SDK.

Because the REST API endpoints have a hierarchical structure, you need to load/create the highest-level objects
before you can load lower-level ones. The example below shows how the pieces of the URI correspond to the REST
endpoints/SDK classes. The first part of the URI is the IP address of your BIG-IP®.

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
|-------|---|----|--------------|-------|-------------|

OC OC Coll Resource SC SubColl Resrc

OC Organizing Collection
Coll Collection
Resource Resource
SC Subcollection
SubColl Resrc Subcollection Resource

In the sections below, we’ll walk through the Python object paths using LTM® pools and pool members as examples.
You can also skip straight to the Coding Example.

Organizing Collection

The mgmt/tm and ltm organizing collections define what area of the BIG-IP® you’re going to work with. The
mgmt/tm organizing collection corresponds to the management plane of your BIG-IP® device (TMOS). Loading
ltm indicates that we’re going to work with the BIG-IP®’s Local Traffic Manager® module.

Endpoint http://192.168.1.1/mgmt/tm/
Kind tm:restgroupresolverviewstate
Type organizing collection
Class f5.bigip.BigIP
Instantiation bigip = BigIP(’192.168.1.1’, ’myuser’, ’mypass’)

Endpoint http://192.168.1.1/mgmt/tm/ltm
Kind tm:ltm:collectionstate
Type organizing collection
Class f5.bigip.ltm
Instantiation ltm = bigip.ltm

Example: Connect to the BIG-IP® and load the LTM® module

from f5.bigip import BigIP
bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
ltm = bigip.ltm

>>> print bigip
<f5.bigip.BigIP object at 0x8a29d0>

>>> print ltm
<f5.bigip.ltm.LTM object at 0x8c0b30>

3.1. User Guide 15
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Collection

Now that the higher-level organizing collections are loaded (in other words, we signed in to the BIG-IP® and accessed
the LTM® module), we can load the pool collection.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool
Kind tm:ltm:pool:poolcollectionstate
Type collection
Class f5.bigip.ltm.pool.Pools
Instantiation pools = bigip.ltm.pools

Example: Load the pools collection

from f5.bigip import BigIP

bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
pool_collection = bigip.ltm.pools
pools = bigip.ltm.pools.get_collection()

for pool in pools:
print pool.name

my_newpool
mypool
pool2
pool_1

In the above example, we instantiated the class f5.bigip.ltm.pool.Pools, then used the
f5.bigip.ltm.pool.Pools.get_collection() method to fetch the collection (in other words, a
list of the pool resources configured on the BIG-IP®).

Resource

In the SDK, we refer to a single instance of a configuration object as a resource. As shown in the previous sections,
we are able to access the pool resources on the BIG-IP® after loading the mgmt\tm\ltm organizing collections
and the pools collection.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/
Kind tm:ltm:pool:poolstate
Type resource
Class f5.bigip.ltm.pool.Pool
Instantiation pool = pools.pool.load(partition=’Common’, name=’mypool’)

Example: Load a pool resource

from f5.bigip import BigIP
pool = pools.pool.load(partition='Common', name='mypool')

In the example above, we instantiated the class f5.bigip.ltm.pool.Pool and loaded the
f5.bigip.ltm.pools.pool object. The object is a python representation of the BIG-IP® pool we loaded (in
this case, Common/mypool).

Tip: You can always see the representation of an object using the raw() method.
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>>> pool.raw
{
u'generation': 123,
u'minActiveMembers': 0,
u'ipTosToServer': u'pass-through',
u'loadBalancingMode': u'round-robin',
u'allowNat': u'yes',
u'queueDepthLimit': 0,
u'membersReference': {

u'isSubcollection': True,
u'link': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0'},
u'minUpMembers': 0, u'slowRampTime': 10,
u'minUpMembersAction': u'failover',
'_meta_data': {

'attribute_registry': {
'tm:ltm:pool:memberscollectionstate': <class 'f5.bigip.ltm

.pool.Members_s'>
},
'container': <f5.bigip.ltm.pool.Pools object at 0x835ef0>,
'uri': u'https://10.190.6.253/mgmt/tm/ltm/pool/~Common~mypool/',
'exclusive_attributes': [],
'read_only_attributes': [],
'allowed_lazy_attributes': [<class 'f5.bigip.ltm.pool.Members_s'>],
'required_refresh_parameters': set(['name']),
'required_json_kind': 'tm:ltm:pool:poolstate',
'bigip': <f5.bigip.BigIP object at 0x5826f0>,
'required_creation_parameters': set(['name']),
'creation_uri_frag': '',
'creation_uri_qargs': {u'ver': [u'11.6.0']}

},
u'minUpMembersChecking': u'disabled',
u'queueTimeLimit': 0,
u'linkQosToServer': u'pass-through',
u'queueOnConnectionLimit': u'disabled',
u'fullPath': u'/Common/mypool',
u'kind': u'tm:ltm:pool:poolstate',
u'name': u'mypool',
u'partition': u'Common',
u'allowSnat': u'yes',
u'ipTosToClient': u'pass-through',
u'reselectTries': 0,
u'selfLink': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0',
u'serviceDownAction': u'none',
u'ignorePersistedWeight': u'disabled',
u'linkQosToClient': u'pass-through'

}

Subcollection

A subcollection is a collection of resources that can only be accessed via its parent resource.

To continue our example: The f5.bigip.ltm.pool.Pool resource object contains
f5.bigip.ltm.pool.Member subcollection resource objects. These subcollection resources – the real-
servers that are attached to the pool, or ‘pool members’ – are part of the members_s subcollection. (Remember, we
have to add _s to the end of collection object names if the name of the resource object it contains already ends in s).
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Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members
Kind tm:ltm:pool:members:memberscollectionstate
Type subcollection
Class f5.bigip.ltm.pool.Members_s
Instantiation members = pool.members_s

Example: Load the members_s collection

from f5.bigip import BigIP
members = pool.members_s.get_collection()
print members
[<f5.bigip.ltm.pool.Members object at 0x9d7ff0>, <f5.bigip.ltm.pool.Members object at 0x9d7830>]

Subcollection Resource

As explained in the previous section, a subcollection contains subcollection resources. These subcollection resources
can only be loaded after all of the parent objects (organizing collections, resource, and subcollection) have been loaded.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1
Kind tm:ltm:pool:members:membersstate
Type subcollection resource
Class f5.bigip.ltm.pool.Members
Instantia-
tion

members = pool.members_s.members.load(partition=’Common’,
name=’member1:<port>’)

Example: Load member objects

from f5.bigip import BigIP
member = members_s.members.load(partition='Common', name='m1')
print member
<f5.bigip.ltm.pool.Members object at 0x9fd530>

Coding Example

3.1.4 Coding Example
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Managing LTM Pools and Members via the F5 SDK

from f5.bigip import BigIP

# Connect to the BigIP and configure the basic objects
bigip = BigIP('10.190.6.253', 'admin', 'default')
ltm = bigip.ltm
pools = bigip.ltm.pools.get_collection()
pool = bigip.ltm.pools.pool

# Define a pool object and load an existing pool
pool_obj = bigip.ltm.pools.pool
pool_1 = pool_obj.load(partition='Common', name='mypool')

# We can also skip creating the object and load the pool directly
pool_2 = bigip.ltm.pools.pool.load(partition='Common', name='mypool')

# Print the object
print pool_1.raw

# Make sure 1 and 2 have the same names and generation
assert pool_1.name == pool_2.name
assert pool_1.generation == pool_2.generation

# Update the description
pool_1.description = "This is my pool"
pool_1.update()

# Check the updated description
print pool_1.description

# Since we haven't refreshed pool_2 it shouldn't match pool_1 any more
assert pool_1.generation > pool_2.generation

# Refresh pool_2 and check that is now equal
pool_2.refresh()
assert pool_1.generation == pool_2.generation

print pool_1.generation
print pool_2.generation

# Create members on pool_1

members = pool_1.members_s.get_collection()
member = pool_1.members_s.members

m1 = pool_1.members_s.members.create(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.create(partition='Common', name='m2:80')

# load the pool members
m1 = pool_1.members_s.members.load(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.load(partition='Common', name='m2:80')

# Get all of the pool members for pool_1 and print their names

for member in members:
print member.name

# Delete our pool member m1
m1.delete()

# Make sure it is gone
if pool_1.members_s.members.exists(partition='Common', name='m1:80'):

raise Exception("Object should have been deleted")

# We are done with this pool so remove it from BIG-IP®
pool_1.delete()

# Make sure it is gone

if bigip.ltm.pools.pool.exists(partition='Common', name='mypool'):
raise Exception("Object should have been deleted")
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3.1.5 Further Reading

• F5 SDK API Docs

• F5 iControl REST DevCentral Site

• F5 iControl REST API Reference (PDF)

• ‘F5 iControl REST API Guide (PDF) <https://devcentral.f5

.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160?download=true>‘_

3.2 Developer Guide

COMING SOON

3.3 f5

3.3.1 f5 package

f5.bigip

f5.bigip module

Classes and functions for configuring BIG-IP

cm BIG-IP® cluster module
ltm BIG-IP® Local Traffic Manager™ (LTM®) module.
net BIG-IP® net module
shared BIG-IP® Shared (shared) module
sys BIG-IP® System (sys) module

Organizing Collection Modules

resource.ResourceBase(container) Base class for all BIG-IP® iControl REST API endpoints.
resource.OrganizingCollection(bigip) Base class for objects that collect resources under them.
resource.Collection(container) Base class for objects that collect a list of Resources
resource.Resource(container) Base class to represent a Configurable Resource on the device.
resource.PathElement(container) Base class to represent a URI path element that does not contain data.

Resource Base Classes

resource.KindTypeMismatch Raise this when server JSON keys are incorrect for the Resource type.
resource.DeviceProvidesIncompatibleKey Raise this when server JSON keys are incompatible with Python.
resource.InvalidResource Raise this when a caller tries to invoke an unsupported CRUDL op.
resource.MissingRequiredCreationParameter Various values MUST be provided to create different Resources.

Continued on next page

20 Chapter 3. Detailed Documentation

https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx
https://devcentral.f5.com/d/icontrol-rest-api-reference-version-120?download=true
https://devcentral.f5


F5 Python SDK Documentation, Release 0.1.3

Table 3.3 – continued from previous page
resource.MissingRequiredReadParameter Various values MUST be provided to refresh some Resources.
resource.UnregisteredKind The returned server JSON kind key wasn’t expected by this Resource.
resource.GenerationMismatch The server reported BIG-IP® is not the expacted value.
resource.InvalidForceType Must be of type bool.
resource.URICreationCollision self._meta_data[’uri’] can only be assigned once. In create or load.
resource.UnsupportedOperation Object does not support the method that was called.

Resource Exceptions

mixins.ToDictMixin Convert an object’s attributes to a dictionary
mixins.LazyAttributesMixin
mixins.ExclusiveAttributesMixin Overrides __setattr__ to remove exclusive attrs from the object.
mixins.UnnamedResourceMixin This makes a resource object work if there is no name.
mixins.LazyAttributesRequired Raised when a object accesses a lazy attribute that is not listed

Mixins
class f5.bigip.BigIP(hostname, username, password, **kwargs)

Bases: f5.bigip.resource.OrganizingCollection

An interface to a single BIG-IP

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

f5.bigip.cm
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Module Contents BIG-IP® cluster module

REST URI http://localhost/mgmt/tm/cm/

GUI Path Device Management

REST Kind tm:cm:*

device BIG-IP® cluster device submodule
device_group BIG-IP® cluster device-group submodule
traffic_group BIG-IP® cluster traffic-group submodule

Submodule List
class f5.bigip.cm.Cm(bigip)

Bases: f5.bigip.resource.OrganizingCollection

BIG-IP® Cluster Organizing Collection.

sync(device_group_name)
Sync the configuration of the device-group.

Execute the run command via the iControl REST session with the config-sync to group device-group
options. Any exceptions triggered by the POST to the iControl REST server are raised back to the caller.

Parameters device_group_name (str) – Name of the device group to sync.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

Submodules
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device BIG-IP® cluster device submodule

REST URI http://localhost/mgmt/tm/cm/device/

GUI Path Device Management --> Devices

REST Kind tm:cm:device:*

class f5.bigip.cm.device.Devices(cm)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster devices collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device.Device(device_s)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster device object.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

24 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError


F5 Python SDK Documentation, Release 0.1.3

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

device_group BIG-IP® cluster device-group submodule

REST URI http://localhost/mgmt/tm/cm/device-group

GUI Path Device Management --> Device Groups

REST Kind tm:cm:device-group:*

class f5.bigip.cm.device_group.Device_Groups(cm)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster device-groups collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values
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refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device_group.Device_Group(device_groups)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster device-group resource

sync()
Sync the configuration of the device-group

Executes the containing object’s cm sync() method to sync the configuration of the device-group.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.cm.device_group.Devices_s(device_group)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster devices-group devices subcollection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device_group.Devices(devices_s)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster devices-group devices subcollection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

traffic_group BIG-IP® cluster traffic-group submodule

REST URI http://localhost/mgmt/tm/cm/traffic-group

3.3. f5 29

http://docs.python-requests.org/en/latest/api/#requests.HTTPError


F5 Python SDK Documentation, Release 0.1.3

GUI Path Device Management --> Traffic Groups

REST Kind tm:cm:traffic-group:*

class f5.bigip.cm.traffic_group.Traffic_Groups(cm)
Bases: f5.bigip.resource.Collection

BIG-IP® cluster traffic-group collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.traffic_group.Traffic_Group(traffic_groups)
Bases: f5.bigip.resource.Resource

BIG-IP® cluster traffic-group resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.
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Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

f5.bigip.ltm

Module Contents BIG-IP® Local Traffic Manager™ (LTM®) module.

REST URI http://localhost/mgmt/tm/ltm/

GUI Path Local Traffic

REST Kind

tm:ltm:*

monitor BIG-IP® LTM monitor submodule.
nat BIG-IP® Local Traffic Manager (LTM) Nat module.
node BIG-IP® Local Traffic Manager (LTM) node module.
policy BIG-IP® Local Traffic Manager (LTM) policy module.
pool BIG-IP® Local Traffic Manager™ (LTM®) pool module.
rule BIG-IP® Local Traffic Manager (LTM) rule module.
snat BIG-IP® Local Traffic Manager (LTM) Snat module.
snatpool BIG-IP Local Traffic Manager (LTM) SNAT pool module.
snat_translation BIG-IP Local Traffic Manager (LTM) SNAT Translation module.
ssl This module provides some more Pythonic support for SSL.
virtual BIG-IP® Local Traffic Manager (LTM) virtual module.
virtual_address Directory: ltm module: virtual-address.

class f5.bigip.ltm.Ltm(bigip)
Bases: f5.bigip.resource.OrganizingCollection

BIG-IP® Local Traffic Manager (LTM) organizing collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

Submodules

monitor BIG-IP® LTM monitor submodule.

REST URI http://localhost/mgmt/tm/ltm/monitors/

GUI Path Local Traffic --> Monitors

REST Kind tm:ltm:monitors*

Https(monitor) BIG-IP® Http monitor collection.
Http(https) BIG-IP® Http monitor resource.
Https_s(monitor) BIG-IP® Https monitor collection.
HttpS(https_s) BIG-IP® Https monitor resource.
Diameters(monitor) BIG-IP® diameter monitor collection.
Diameter(diameters) BIG-IP® diameter monitor resource.
Dns_s(monitor) BIG-IP® Dns monitor collection.
Dns(dns_s) BIG-IP® Dns monitor resource.
Externals(monitor) BIG-IP® external monitor collection.
External(externals) BIG-IP® external monitor resrouce.
Firepass_s(monitor) BIG-IP® Fire Pass monitor collection.
Firepass(firepass_s) BIG-IP® external monitor resource.
Ftps(monitor) BIG-IP® Ftp monitor collection.
Ftp(ftps) BIG-IP® Ftp monitor resource.
Gateway_Icmps(monitor) BIG-IP® Gateway Icmp monitor collection.
Gateway_Icmp(gateway_icmps) BIG-IP® Gateway Icmp monitor resource.
Icmps(monitor) BIG-IP® Icmp monitor collection.
Icmp(icmps) BIG-IP® Icmp monitor resource.
Imaps(monitor) BIG-IP® Imap monitor collection.
Imap(imaps) BIG-IP® Imap monitor resource.
Inbands(monitor) BIG-IP® in band monitor collection.
Inband(inbands) BIG-IP® in band monitor resource.
Ldaps(monitor) BIG-IP® Ldap monitor collection.
Ldap(ldaps) BIG-IP® Ldap monitor resource.
Module_Scores(monitor) BIG-IP® module scores monitor collection.

Continued on next page
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Table 3.7 – continued from previous page
Module_Score(gateway_icmps) BIG-IP® module scores monitor resource.
Mssqls(monitor) BIG-IP® Mssql monitor collection.
Mssql(mssqls) BIG-IP® Mssql monitor resource.
Mysqls(monitor) BIG-IP® MySQL monitor collection.
Mysql(mysqls) BIG-IP® MySQL monitor resource.
Nntps(monitor) BIG-IP® Nntps monitor collection.
Nntp(nntps) BIG-IP® Nntps monitor resource.
Nones(monitor) BIG-IP® None monitor collection.
NONE(nones) BIG-IP® None monitor resource.
Oracles(monitor) BIG-IP® Oracle monitor collection.
Oracle(oracles) BIG-IP® Oracle monitor resource.
Pop3s(monitor) BIG-IP® Pop3 monitor collection.
Pop3(pop3s) BIG-IP® Pop3 monitor resource.
Postgresqls(monitor) BIG-IP® PostGRES SQL monitor collection.
Postgresql(postgresqls) BIG-IP® PostGRES SQL monitor resource.
Radius_s(monitor) BIG-IP® radius monitor collection.
Radius(radius_s) BIG-IP® radius monitor resource.
Radius_Accountings(monitor) BIG-IP® radius accounting monitor collection.
Radius_Accounting(radius_accountings) BIG-IP® radius accounting monitor resource.
Real_Servers(monitor) BIG-IP® real-server monitor collection.
Real_Server(real_servers) BIG-IP® real-server monitor resource.
Rpcs(monitor) BIG-IP® Rpc monitor collection.
Rpc(rpcs) BIG-IP® Rpc monitor resource.
Sasps(monitor) BIG-IP® Sasp monitor collection.
Sasp(sasps) BIG-IP® Sasp monitor resource.
Scripteds(monitor) BIG-IP® scripted monitor collection.
Scripted(scripteds) BIG-IP® scripted monitor resource.
Sips(monitor) BIG-IP® Sip monitor collection.
Sip(sips) BIG-IP® Sip monitor resource.
Smbs(monitor) BIG-IP® Smb monitor collection.
Smb(smbs) BIG-IP® Smb monitor resource.
Smtps(monitor) BIG-IP® Smtp monitor collection.
Smtp(smtps) BIG-IP® Smtp monitor resource.
Snmp_Dcas(monitor) BIG-IP® SNMP DCA monitor collection.
Snmp_Dca(snmp_dcas) BIG-IP® SNMP DCA monitor resource.
Snmp_Dca_Bases(monitor) BIG-IP® SNMP DCA bases monitor collection.
Snmp_Dca_Base(snmp_dca_bases) BIG-IP® SNMP DCA monitor resource.
Soaps(monitor) BIG-IP® Soap monitor collection.
Soap(soaps) BIG-IP® Soap monitor resource.
Tcps(monitor) BIG-IP® Tcp monitor collection.
Tcp(tcps) BIG-IP® Tcp monitor resource.
Tcp_Echos(monitor) BIG-IP® Tcp echo monitor collection.
Tcp_Echo(tcp_echos) BIG-IP® Tcp echo monitor resource.
Tcp_Half_Opens(monitor) BIG-IP® Tcp half open monitor collection.
Tcp_Half_Open(tcp_half_opens) BIG-IP® Tcp half open monitor resource.
Udps(monitor) BIG-IP® Udp monitor collection.
Udp(udps) BIG-IP® Udp monitor resource.
Virtual_Locations(monitor) BIG-IP® virtual-locations monitor collection.
Virtual_Location(virtual_locations) BIG-IP® virtual-locations monitor resource.
Waps(monitor) BIG-IP® Wap monitor collection.

Continued on next page
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Table 3.7 – continued from previous page
Wap(waps) BIG-IP® Wap monitor resource.
Wmis(monitor) BIG-IP® Wmi monitor collection.
Wmi(wmis) BIG-IP® Wmi monitor resource.

Monitor Collections and Resources
class f5.bigip.ltm.monitor.Https(monitor)

Bases: f5.bigip.resource.Collection

BIG-IP® Http monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.monitor.Http(https)

Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Http monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Https_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Https monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.HttpS(https_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Https monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Diameters(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® diameter monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Diameter(diameters)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® diameter monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Dns_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Dns monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Dns(dns_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Dns monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Externals(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® external monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.External(externals)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® external monitor resrouce.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Firepass_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Fire Pass monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Firepass(firepass_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® external monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Ftps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Ftp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Ftp(ftps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Ftp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Gateway_Icmps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Gateway Icmp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Gateway_Icmp(gateway_icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Gateway Icmp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Icmps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Icmp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Icmp(icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Icmp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 53



F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Imaps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Imap monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Imap(imaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Imap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

3.3. f5 55



F5 Python SDK Documentation, Release 0.1.3

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Inbands(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® in band monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Inband(inbands)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® in band monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Ldaps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Ldap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Ldap(ldaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Ldap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Module_Scores(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® module scores monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Module_Score(gateway_icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® module scores monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Mysqls(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® MySQL monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Mysql(mysqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® MySQL monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Mssqls(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Mssql monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Mssql(mssqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Mssql monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Nntps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Nntps monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Nntp(nntps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Nntps monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Nones(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® None monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.NONE(nones)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® None monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Oracles(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Oracle monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Oracle(oracles)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Oracle monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Pop3s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Pop3 monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Pop3(pop3s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Pop3 monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Postgresqls(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® PostGRES SQL monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Postgresql(postgresqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® PostGRES SQL monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Radius_s(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® radius monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Radius(radius_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® radius monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

3.3. f5 79



F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Radius_Accountings(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® radius accounting monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Radius_Accounting(radius_accountings)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® radius accounting monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Real_Servers(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® real-server monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Real_Server(real_servers)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® real-server monitor resource.

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•tmCommand attribute removed prior to PUT

•agent attribute removed prior to PUT

•post attribute removed prior to PUT

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests
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API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.ltm.monitor.Rpcs(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Rpc monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Rpc(rpcs)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Rpc monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Sasps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Sasp monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Sasp(sasps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Sasp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Scripteds(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® scripted monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Scripted(scripteds)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® scripted monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Sips(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Sip monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Sip(sips)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Sip monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Smbs(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Smb monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Smb(smbs)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Smb monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Smtps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Smtp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Smtp(smtps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Smtp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Snmp_Dcas(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® SNMP DCA monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Snmp_Dca(snmp_dcas)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® SNMP DCA monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Snmp_Dca_Bases(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® SNMP DCA bases monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Snmp_Dca_Base(snmp_dca_bases)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® SNMP DCA monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Soaps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Soap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Soap(soaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Soap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Tcp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp(tcps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Tcp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcp_Echos(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Tcp echo monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp_Echo(tcp_echos)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Tcp echo monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcp_Half_Opens(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Tcp half open monitor collection.
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp_Half_Open(tcp_half_opens)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Tcp half open monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:
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•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Udps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Udp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Udp(udps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Udp monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

112 Chapter 3. Detailed Documentation



F5 Python SDK Documentation, Release 0.1.3

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Virtual_Locations(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® virtual-locations monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Virtual_Location(virtual_locations)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® virtual-locations monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Waps(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Wap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Wap(waps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Wap monitor resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Wmis(monitor)
Bases: f5.bigip.resource.Collection

BIG-IP® Wmi monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Wmi(wmis)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BIG-IP® Wmi monitor resource.

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•agent attribute removed prior to PUT

•post attribute removed prior to PUT

•method attribute removed prior to PUT

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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nat BIG-IP® Local Traffic Manager (LTM) Nat module.

REST URI http://localhost/mgmt/tm/ltm/nat

GUI Path Local Traffic --> Nat

REST Kind tm:ltm:nat:*

Nats(ltm) BIG-IP® LTM Nat collection object
Nat(nat_s) BIG-IP® LTM Nat collection resource

node Collections and Resources
class f5.bigip.ltm.nat.Nats(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM Nat collection object

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
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class f5.bigip.ltm.nat.Nat(nat_s)
Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® LTM Nat collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Note: If you are creating with ‘‘inheritedTrafficGroup‘ set to False you just also have a trafficGroup.

Parameters kwargs – All the key-values needed to create the resource

Returns self - A python object that represents the object’s configuration and state on the BIG-
IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

node BIG-IP® Local Traffic Manager (LTM) node module.

REST URI http://localhost/mgmt/tm/ltm/node

GUI Path Local Traffic --> Nodes

REST Kind tm:ltm:node:*

Nodes(ltm) BIG-IP® LTM node collection
Node(nodes) BIG-IP® LTM node resource

node Collections and Resources
class f5.bigip.ltm.node.Nodes(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM node collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.
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Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.node.Node(nodes)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM node resource

update(**kwargs)
Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•If fqdn is in the kwargs or set as an attribute, removes the autopopulate and addressFamily
keys from it if there.

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

policy BIG-IP® Local Traffic Manager (LTM) policy module.

REST URI http://localhost/mgmt/tm/ltm/policy

GUI Path Local Traffic --> policy

REST Kind tm:ltm:policy:*

Policys(ltm) BIG-IP® LTM policy collection.
Policy(policy_s) BIG-IP® LTM policy resource.
Rules_s(policy) BIG-IP® LTM policy rules sub-collection.
Rules(rules_s) BIG-IP® LTM policy rules sub-collection resource.
Actions_s(rules) BIG-IP® LTM policy actions sub-collection.
Actions(actions_s) BIG-IP® LTM policy actions sub-collection resource.
Conditions_s(rules) BIG-IP® LTM policy conditions sub-collection.
Conditions(conditions_s) BIG-IP® LTM policy conditions sub-collection resource.
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Policy Collections and Resources
class f5.bigip.ltm.policy.Policys(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.policy.Policy(policy_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Rules_s(policy)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy rules sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
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class f5.bigip.ltm.policy.Rules(rules_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy rules sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.
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Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Actions_s(rules)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy actions sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values
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refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Actions(actions_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy actions sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.
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load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Conditions_s(rules)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM policy conditions sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.
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Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Conditions(conditions_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM policy conditions sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP
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Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

pool BIG-IP® Local Traffic Manager™ (LTM®) pool module.

REST URI http://localhost/mgmt/tm/ltm/pool

GUI Path Local Traffic --> Pools

REST Kind tm:ltm:pools:*
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Pools(ltm) BIG-IP® LTM pool collection
Pool(pool_s) BIG-IP® LTM pool resource
Members_s(pool) BIG-IP® LTM pool members sub-collection
Member

Pool Collections and Resources
class f5.bigip.ltm.pool.Pools(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM pool collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.pool.Pool(pool_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM pool resource

3.3. f5 135



F5 Python SDK Documentation, Release 0.1.3

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.
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This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.pool.Members_s(pool)
Bases: f5.bigip.resource.Collection

BIG-IP® LTM pool members sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
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CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.pool.Members(members_s)
Bases: f5.bigip.resource.Resource

BIG-IP® LTM pool members sub-collection resource

update(**kwargs)
Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•If fqdn is in the kwargs or set as an attribute, removes the autopopulate and addressFamily
keys from it if there.

Parameters

• state= – state value or None required.

• kwargs – keys and associated values to alter on the device

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it must then check the contents of the json contained in the response, this is because
the “pool/... /members” resource provided by the server returns a status code of 200 for queries that do not
correspond to an existing configuration. Therefore this method checks for the presence of the “address”
key in the response JSON... of course, this means that exists depends on an unexpected idiosyncrancy of
the server, and might break with version updates, edge cases, or other unpredictable changes.

Parameters kwargs – Keyword arguments required to get objects, “partition”

and “name” are required

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

rule BIG-IP® Local Traffic Manager (LTM) rule module.

REST URI http://localhost/mgmt/tm/ltm/rule

GUI Path Local Traffic --> Rules

REST Kind tm:ltm:rule:*

Rules(ltm) BIG-IP® LTM rule collection
Rule(rule_s) BIG-IP® LTM rule resource

Rule Collections and Resources
class f5.bigip.ltm.rule.Rules(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM rule collection
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.rule.Rule(rule_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM rule resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.
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Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snat BIG-IP® Local Traffic Manager (LTM) Snat module.

REST URI http://localhost/mgmt/tm/ltm/snat

GUI Path Local Traffic --> Snat

REST Kind tm:ltm:snat:*

Snats(ltm) BIG-IP® LTM Snat collection
Snat(snat_s) BIG-IP® LTM Snat resource

Snat Collections and Resources
class f5.bigip.ltm.snat.Snats(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM Snat collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snat.Snat(snat_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM Snat resource

create(**kwargs)
Call this to create a new snat on the BIG-IP®.

Uses HTTP POST to ‘containing’ URI to create a service associated with a new URI on the device.

Note this is the one of two fundamental Resource operations that returns a different uri (in the returned
object) than the uri the operation was called on. The returned uri can be accessed as Object.selfLink, the
actual uri used by REST operations on the object is Object._meta_data[’uri’]. The _meta_data[’uri’] is the
same as Object.selfLink with the substring ‘localhost’ replaced with the value of Object._meta_data[’BIG-
IP’]._meta_data[’hostname’], and without query args, or hash fragments.

The following is done prior to the POST * Ensures that one of automap, snatpool, translastion

parameter is passed in.

Parameters kwargs – All the key-values needed to create the resource

Returns An instance of the Python object that represents the device’s

uri-published resource. The uri of the resource is part of the object’s _meta_data.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status
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code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snatpool BIG-IP Local Traffic Manager (LTM) SNAT pool module.

REST URI https://localhost/mgmt/tm/ltm/snatpool?ver=11.6.0

GUI Path Local Traffic --> Address Translation --> SNAT Pool List

REST Kind tm:ltm:snatpool:*

Snatpools(ltm) BIG-IP SNAT pool collection.
Snatpool(Snatpools) BIG-IP SNAT Pool resource.

Snat Collections and Resources
class f5.bigip.ltm.snatpool.Snatpools(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP SNAT pool collection.

create(**kwargs)
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Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snatpool.Snatpool(Snatpools)

Bases: f5.bigip.resource.Resource

BIG-IP SNAT Pool resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.
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Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed
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Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snat_translation BIG-IP Local Traffic Manager (LTM) SNAT Translation module.

REST URI https://localhost/mgmt/tm/ltm/snat-translation?ver=11.6.0

GUI Path Local Traffic --> Address Translation --> Address Translation List

REST Kind tm:ltm:snat-translation:*

Snat_Translations(ltm) BIG-IP SNAT Translation collection.
Snat_Translation(Snat_Translations) BIG-IP SNAT Translation resource.

Snat Collections and Resources
class f5.bigip.ltm.snat_translation.Snat_Translations(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP SNAT Translation collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
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CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snat_translation.Snat_Translation(Snat_Translations)

Bases: f5.bigip.mixins.ExclusiveAttributesMixin, f5.bigip.resource.Resource

BIG-IP SNAT Translation resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

ssl

virtual BIG-IP® Local Traffic Manager (LTM) virtual module.

REST URI http://localhost/mgmt/tm/ltm/virtual

GUI Path Local Traffic --> Virtual Servers

REST Kind tm:ltm:virtual:*

Virtuals(ltm) BIG-IP® LTM virtual collection
Virtual(virtual_s) BIG-IP® LTM virtual resource

Virtual Collections and Resources
class f5.bigip.ltm.virtual.Virtuals(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP® LTM virtual collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
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Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.virtual.Virtual(virtual_s)

Bases: f5.bigip.resource.Resource

BIG-IP® LTM virtual resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}
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Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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class f5.bigip.ltm.virtual.Profiles(Profiles_s)
Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.
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Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.virtual.Profiles_s(virtual)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values
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refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

virtual_address Directory: ltm module: virtual-address.

REST URI https://localhost/mgmt/tm/ltm/virtual-address?ver=11.6.0

GUI Path Local Traffic Manager --> Virtual Servers --> Virtual Address List

REST Kind tm:ltm:virtual-address:*

Virtual_Address_s(ltm) BIG-IP LTM virtual address collection.
Virtual_Address(Virtual_Address_s) BIG-IP LTM virtual address resource.

Virtual Address Collections and Resources
class f5.bigip.ltm.virtual_address.Virtual_Address_s(ltm)

Bases: f5.bigip.resource.Collection

BIG-IP LTM virtual address collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

154 Chapter 3. Detailed Documentation



F5 Python SDK Documentation, Release 0.1.3

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.virtual_address.Virtual_Address(Virtual_Address_s)

Bases: f5.bigip.resource.Resource

BIG-IP LTM virtual address resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status
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code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

f5.bigip.net

Module Conents BIG-IP® net module

REST URI http://localhost/mgmt/tm/net/

GUI Path Network

REST Kind tm:net:*

arp BIG-IP® Network ARP module.
fdb Directory: net module: fdb.
interface BIG-IP® Network interface module.
route BIG-IP® Network route module.
route_domain Directory: net module: route-domain.
selfip BIG-IP® Network self-ip module.

Continued on next page

156 Chapter 3. Detailed Documentation



F5 Python SDK Documentation, Release 0.1.3

Table 3.18 – continued from previous page
tunnels BIG-IP® Network tunnels module.
vlan BIG-IP® Network vlan module.

Submodule List

Submodules

arp BIG-IP® Network ARP module.

REST URI http://localhost/mgmt/tm/net/arp

GUI Path Network --> ARP

REST Kind tm:net:arp:*

Arps(net) BIG-IP® network ARP collection
Arp(arp_s) BIG-IP® network ARP resource

ARP Collections and Resources
class f5.bigip.net.arp.Arps(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network ARP collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.
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This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.arp.Arp(arp_s)

Bases: f5.bigip.resource.Resource

BIG-IP® network ARP resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.
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This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

interface BIG-IP® Network interface module.

REST URI http://localhost/mgmt/tm/net/interface

GUI Path Network --> Interfaces

REST Kind tm:net:interface:*

Interfaces(net) BIG-IP® network interface collection
Interface(interface_s) BIG-IP® network interface collection

Interface Collections and Resources
class f5.bigip.net.interface.Interfaces(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network interface collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
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Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.interface.Interface(interface_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® network interface collection

create(**kwargs)
Create is not supported for interfaces.

Raises UnsupportedOperation

delete()
Delete is not supported for interfaces.

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

route BIG-IP® Network route module.

REST URI http://localhost/mgmt/tm/net/route

GUI Path Network --> Routes

REST Kind tm:net:route:*

Routes(net) BIG-IP® network route collection
Route(route_s) BIG-IP® network route resource

Route Collections and Resources
class f5.bigip.net.route.Routes(net)
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Bases: f5.bigip.resource.Collection

BIG-IP® network route collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.route.Route(route_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® network route resource

create(**kwargs)
Create a Route on the BIG-IP® and the associated python object.

One of the following gateways is required when creating the route objects: blackhole, gw,
tmInterface, pool.

Params kwargs keyword arguments passed in from create call

Raises KindTypeMismatch

Raises MissingRequiredCreationParameter
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Raises HTTPError

Returns Python Route object

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.
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This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

route_domain Directory: net module: route-domain.

REST URI https://localhost/mgmt/tm/net/route-domain?ver=11.6.0

GUI Path XXX

REST Kind tm:net:route-domain:*

Route_Domains(net) A Collection concrete subclass docstring.
Route_Domain(Route_Domains) A Resource concrete subclass.

Route Collections and Resources
class f5.bigip.net.route_domain.Route_Domains(net)

Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values
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refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.route_domain.Route_Domain(Route_Domains)

Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

3.3. f5 165

http://docs.python-requests.org/en/latest/api/#requests.HTTPError


F5 Python SDK Documentation, Release 0.1.3

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

selfip BIG-IP® Network self-ip module.

Note: Self IPs path does not match their kind or URI because the string self causes problems in Python because it
is a reserved word.

REST URI http://localhost/mgmt/tm/net/self

GUI Path Network --> Self IPs

REST Kind tm:net:self:*

Selfips(net) BIG-IP® network Self-IP collection
Selfip(selfip_s) BIG-IP® Self-IP resource

Selfip Collections and Resources
class f5.bigip.net.selfip.Selfips(net)

Bases: f5.bigip.resource.Collection
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BIG-IP® network Self-IP collection

Note: The objects in the collection are actually called ‘self’ in iControlREST, but obviously this will cause
problems in Python so we changed its name to Selfip.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.selfip.Selfip(selfip_s)

Bases: f5.bigip.resource.Resource

BIG-IP® Self-IP resource

Use this object to create, refresh, update, delete, and load self ip configuration on the BIG-IP®. This requires
that a VLAN object be present on the system and that object’s :attrib:‘fullPath‘ be used as the VLAN name.

The address that is used for create is a <ipaddress>/<netmask>. For example 192.168.1.1/32.
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Note: The object is actually called self in iControlREST, but obviously this will cause problems in Python
so we changed its name to Selfip.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.
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Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

tunnels BIG-IP® Network tunnels module.

REST URI http://localhost/mgmt/tm/net/tunnels

GUI Path Network --> tunnels

REST Kind tm:net:tunnels:*

Tunnels_s(net) BIG-IP® network tunnels collection
Tunnels(tunnels_s) BIG-IP® network tunnels resource (collection for GRE, Tunnel, VXLANs
Tunnel(tunnels) BIG-IP® tunnels tunnel resource
Gres(tunnels_s) BIG-IP® tunnels GRE sub-collection
Gre(gres) BIG-IP® tunnels GRE sub-collection resource
Vxlans(tunnels_s) BIG-IP® tunnels VXLAN sub-collection
Vxlan(vxlans) BIG-IP® tunnels VXLAN sub-collection resource

Tunnels Collections and Resources
class f5.bigip.net.tunnels.Tunnels_s(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network tunnels collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
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get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.tunnels.Tunnels(tunnels_s)

Bases: f5.bigip.resource.Collection

BIG-IP® network tunnels resource (collection for GRE, Tunnel, VXLANs

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Tunnel(tunnels)
Bases: f5.bigip.resource.Resource

BIG-IP® tunnels tunnel resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.tunnels.Gres(tunnels_s)
Bases: f5.bigip.resource.Collection

BIG-IP® tunnels GRE sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.
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The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Gre(gres)
Bases: f5.bigip.resource.Resource

BIG-IP® tunnels GRE sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.tunnels.Vxlans(tunnels_s)
Bases: f5.bigip.resource.Collection

BIG-IP® tunnels VXLAN sub-collection
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Vxlan(vxlans)
Bases: f5.bigip.resource.Resource

BIG-IP® tunnels VXLAN sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.
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Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

vlan BIG-IP® Network vlan module.

REST URI http://localhost/mgmt/tm/net/vlan

GUI Path Network --> Vlans

REST Kind tm:net:vlan:*

Vlans(net) BIG-IP® network Vlan collection.
Vlan(vlan_s) BIG-IP® network Vlan resource.
Interfaces_s(vlan) BIG-IP® network Vlan interface collection.
Interfaces(interfaces_s) BIG-IP® network Vlan interface resource.

Vlan Collections and Resources
class f5.bigip.net.vlan.Vlans(net)

Bases: f5.bigip.resource.Collection

BIG-IP® network Vlan collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.
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This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.vlan.Vlan(vlan_s)

Bases: f5.bigip.resource.Resource

BIG-IP® network Vlan resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.
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This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.vlan.Interfaces_s(vlan)
Bases: f5.bigip.resource.Collection

BIG-IP® network Vlan interface collection.

Note: Not to be confused with tm/mgmt/net/interface. This is object is actually called interfaces
with an s by the BIG-IP’s REST API.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.
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Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.vlan.Interfaces(interfaces_s)
Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BIG-IP® network Vlan interface resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP
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Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

fdb Directory: net module: fdb.

REST URI https://localhost/mgmt/tm/net/fdb

GUI Path XXX

REST Kind tm:net:fdb:*
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Fdbs(net) A Collection concrete subclass docstring.
Tunnel(Tunnels) A Resource concrete subclass.
Tunnels(fdb) A Collection concrete subclass docstring.
Vlans(fdb) A Collection concrete subclass docstring.

FDB Collections and Resources
class f5.bigip.net.fdb.Fdbs(net)

Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.fdb.Tunnel(Tunnels)

Bases: f5.bigip.resource.Resource

A Resource concrete subclass.
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create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.
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This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.fdb.Tunnels(fdb)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
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CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.fdb.Vlans(fdb)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

f5.bigip.shared
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Module Contents BIG-IP® Shared (shared) module

REST URI http://localhost/mgmt/tm/shared/

GUI Path System

REST Kind N/A – HTTP GET returns an error

bigip_failover_state BIG-IP® shared failover state module
licensing BIG-IP® system failover module

Submodule List

Submodules

bigip_failover_state BIG-IP® shared failover state module

REST URI http://localhost/mgmt/tm/shared/bigip-failover-state

GUI Path N/A

REST Kind tm:shared:licensing:*

class f5.bigip.shared.bigip_failover_state.Bigip_Failover_State(shared)
Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® failover state information

Failover state objects only support the load() method because they cannot be modified via the API.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for BIG-IP® failover state.

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

licensing BIG-IP® system failover module

REST URI http://localhost/mgmt/tm/shared/license

GUI Path System --> License

REST Kind tm:shared:licensing:*

class f5.bigip.shared.licensing.Licensing(shared)
Bases: f5.bigip.resource.PathElement

BIG-IP® licensing stats and states.

Licensing objects themselves do not support any methods and are just containers for lower level objects.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.shared.licensing.Activation(licensing)
Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® license activation status

Activation state objects only support the load() method because they cannot be modified via the API.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for License Activation

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources
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Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.shared.licensing.Registration(licensing)
Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® license registration status

Registration state objects only support the load() method because they cannot be modified via the API.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for License Registration

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

188 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError


F5 Python SDK Documentation, Release 0.1.3

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

f5.bigip.sys

Module Contents BIG-IP® System (sys) module

REST URI http://localhost/mgmt/tm/sys/

GUI Path System

REST Kind tm:sys:*

application BIG-IP® iApp (application) module
db BIG-IP® db module
failover BIG-IP® system failover module
folder BIG-IP® system folder (partition) module
global_settings BIG-IP® system global-settings module
ntp BIG-IP® system ntp module
performance BIG-IP® system peformance stats module.

Submodule List

Submodules

application BIG-IP® iApp (application) module
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REST URI http://localhost/mgmt/sys/application/

GUI Path iApps

REST Kind tm:sys:application:*

Applications(sys) BIG-IP® iApp collection.
Aplscripts(application) BIG-IP® iApp script collection.
Aplscript(apl_script_s) BIG-IP® iApp script resource.
Customstats(application) BIG-IP® iApp custom stats sub-collection.
Customstat(custom_stat_s) BIG-IP® iApp custom stats sub-collection resource.
Services(application) BIG-IP® iApp service sub-collection.
Service(service_s) BIG-IP® iApp service sub-collection resource
Templates(application) BIG-IP® iApp template sub-collection
Template(template_s) BIG-IP® iApp template sub-collection resource

Application Collections and Resources
class f5.bigip.sys.application.Applications(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® iApp collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
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CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.application.Aplscripts(application)

Bases: f5.bigip.resource.Collection

BIG-IP® iApp script collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Aplscript(apl_script_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp script resource.

create(**kwargs)
Create the resource on the BIG-IP®.
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Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
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device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.application.Customstats(application)
Bases: f5.bigip.resource.Collection

BIG-IP® iApp custom stats sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)
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update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Customstat(custom_stat_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp custom stats sub-collection resource.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.application.Services(application)
Bases: f5.bigip.resource.Collection

BIG-IP® iApp service sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects
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raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Service(service_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp service sub-collection resource

update(**kwargs)
Push local updates to the object on the device.

Params kwargs keyword arguments for accessing/modifying the object

Returns updated Python object

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Override of resource.Resource exists() to build proper URI unique to service resources.

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.sys.application.Templates(application)
Bases: f5.bigip.resource.Collection

BIG-IP® iApp template sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.
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Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Template(template_s)
Bases: f5.bigip.resource.Resource

BIG-IP® iApp template sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.
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Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

db BIG-IP® db module

REST URI http://localhost/mgmt/sys/db/

GUI Path N/A

REST Kind tm:sys:db:*

Dbs(sys) BIG-IP® db collection
Db(dbs) BIG-IP® db resource
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DB Collections and Resources
class f5.bigip.sys.db.Dbs(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® db collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.db.Db(dbs)

Bases: f5.bigip.resource.Resource

BIG-IP® db resource

Note: db objects are read-only.

create(**kwargs)
Create is not supported for db resources.

Raises UnsupportedOperation
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delete(**kwargs)
Delete is not supported for db resources.

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!
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failover BIG-IP® system failover module

REST URI http://localhost/mgmt/tm/sys/failover

GUI Path System --> Failover

REST Kind tm:sys:failover:*

Failover(sys) BIG-IP® Failover stats and state change.

Failover Resources
class f5.bigip.sys.failover.Failover(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® Failover stats and state change.

The failover object only supports load, update, and refresh because it is an unnamed resource.

To force the unit to standby call the update() method as follows:

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for Failover

Raises UnsupportedOperation

toggle_standby(**kwargs)
Toggle the standby status of a traffic group.

WARNING: This method which used POST obtains json keys from the device that are not available in the
response to a GET against the same URI.

Unique to refresh/GET: u”apiRawValues” u”selfLink” Unique to toggle_standby/POST: u”command”
u”standby” u”traffic-group”

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
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HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

folder BIG-IP® system folder (partition) module

REST URI http://localhost/mgmt/tm/sys/folder

GUI Path System --> Users --> Partition List

REST Kind tm:sys:folder:*

Folders(sys) BIG-IP® system folder collection.
Folder(folder_s)

Folder Collections and Resources
class f5.bigip.sys.folder.Folders(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® system folder collection.

These are what we refer to as partition in the SDK.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind
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Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

global_settings BIG-IP® system global-settings module

REST URI http://localhost/mgmt/tm/sys/global-settings

GUI Path System --> Configuration --> Device

REST Kind tm:sys:global-settings:*

Global_Settings(sys) BIG-IP® system global-settings resource

Global_Settings Resources
class f5.bigip.sys.global_settings.Global_Settings(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® system global-settings resource

The global_settings object only supports load and update because it is an unnamed resource.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.
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For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

ntp BIG-IP® system ntp module

REST URI http://localhost/mgmt/tm/sys/ntp

GUI Path System --> Configuration --> Device --> NTP

REST Kind tm:sys:ntp:*

Ntp(sys) BIG-IP® system NTP unnamed resource
Restricts(ntp) BIG-IP® system NTP restrict sub-collection
Restrict(restricts) BIG-IP® system NTP restrict sub-collection resource

NTP Resources and Subcollections
class f5.bigip.sys.ntp.Ntp(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® system NTP unnamed resource

This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.
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create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.ntp.Restricts(ntp)
Bases: f5.bigip.resource.Collection

BIG-IP® system NTP restrict sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource
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Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.ntp.Restrict(restricts)
Bases: f5.bigip.resource.Resource

BIG-IP® system NTP restrict sub-collection resource

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.
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After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device
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NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

performance BIG-IP® system peformance stats module.

REST URI http://localhost/mgmt/tm/sys/performance

GUI Path System --> Users --> Partition List

REST Kind tm:sys:performance:*

Performance(sys) BIG-IP® system performace stats collection
All_Stats(performance) BIG-IP® system performace stats unnamed resource

Performance Resources and Subcollections
class f5.bigip.sys.performance.Performance(sys)

Bases: f5.bigip.resource.Collection

BIG-IP® system performace stats collection

get_collection()
Performance collections are not proper BIG-IP® collection objects.

Raises UnsupportedOperation

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.performance.All_Stats(performance)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BIG-IP® system performace stats unnamed resource
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update(**kwargs)
Update is not supported for statistics.

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

resource module

This module provides classes that specify how RESTful resources are handled.

THE MOST IMPORTANT THING TO KNOW ABOUT THIS API IS THAT YOU CAN DIRECTLY INFER REST
URIs FROM PYTHON EXPRESSIONS, AND VICE VERSA.

Examples:

• Expression: bigip = BigIP(‘a’, ‘b’, ‘c’)

• URI Returned: https://a/mgmt/tm/

• Expression: bigip.ltm

• URI Returned: https://a/mgmt/tm/ltm/
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• Expression: pools1 = bigip.ltm.pools

• URI Returned: https://a/mgmt/tm/ltm/pool

• Expression: pool_a = pools1.create(partition=”Common”, name=”foo”)

• URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

There are different types of resources published by the BIG-IP® REST Server, they are represented by the classes in
this module.

We refer to a server-provided resource as a “service”. Thus far all URI referenced resources are “services” in this
sense.

We use methods named Create, Refresh, Update, Load, and Delete to manipulate BIG-IP® device services.

Methods:

• create – uses HTTP POST, creates a new resource and with its own URI on the device

• refresh – uses HTTP GET, obtains the state of a device resource, and sets the representing Python Resource
Object tracks device state via its attrs

• update – uses HTTP PUT, submits a new configuration to the device resource and sets the Resource attrs
to the state the device reports

• load – uses HTTP GET, obtains the state of an existing resource on the device and sets the Resource attrs to that
state

• delete – uses HTTP DELETE, removes the resource from the device, and sets self.__dict__ to {‘deleted’: True}

Available Classes:

• ResourceBase – only refresh is generally supported in all resource types, this class provides refresh. Re-
sourceBase objects are usually instantiated via setting lazy attributes. ResourceBase provides a constructor
to match its call in LazyAttributeMixin.__getattr__. The expected behavior is that all resource subclasses
depend on this constructor to correctly set their self._meta_data[’uri’]. All ResourceBase objects (except
BIG-IPs) have a container (BIG-IPs contain themselves). The container is the object the ResourceBase is
an attribute of.

• OrganizingCollection – These resources support lists of “reference” “links”. These are json blobs without
a Python class representation.

Example URI_path: /mgmt/tm/ltm/

• Collection – These resources support lists of ResourceBase Objects. Example URI_path:
/mgmt/tm/ltm/nat

• Resource – These resources are the only resources that support create, update, and delete operations.
Because they support HTTP post (via _create) they uniquely depend on 2 uri’s, a uri that supports the
creating post, and the returned uri of the newly created resource.

Example URI_path: /mgmt/tm/ltm/nat/~Common~testnat1

exception f5.bigip.resource.KindTypeMismatch
Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incorrect for the Resource type.

exception f5.bigip.resource.DeviceProvidesIncompatibleKey
Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incompatible with Python.
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exception f5.bigip.resource.InvalidResource
Bases: f5.sdk_exception.F5SDKError

Raise this when a caller tries to invoke an unsupported CRUDL op.

All resources support refresh and raw. Only Resource‘s support load, create, update, and delete.

exception f5.bigip.resource.MissingRequiredCreationParameter
Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to create different Resources.

exception f5.bigip.resource.MissingRequiredReadParameter
Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to refresh some Resources.

exception f5.bigip.resource.UnregisteredKind
Bases: f5.sdk_exception.F5SDKError

The returned server JSON kind key wasn’t expected by this Resource.

exception f5.bigip.resource.GenerationMismatch
Bases: f5.sdk_exception.F5SDKError

The server reported BIG-IP® is not the expacted value.

exception f5.bigip.resource.InvalidForceType
Bases: exceptions.ValueError

Must be of type bool.

exception f5.bigip.resource.URICreationCollision
Bases: f5.sdk_exception.F5SDKError

self._meta_data[’uri’] can only be assigned once. In create or load.

exception f5.bigip.resource.UnsupportedOperation
Bases: f5.sdk_exception.F5SDKError

Object does not support the method that was called.

class f5.bigip.resource.PathElement(container)
Bases: f5.bigip.mixins.LazyAttributeMixin

Base class to represent a URI path element that does not contain data.

The BIG-IP® iControl REST API has URIs that are made up of path components that do not return data when
they are queried. This class represents those elements and does not support any of the CURDLE methods that
the other objects do.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.resource.ResourceBase(container)
Bases: f5.bigip.resource.PathElement, f5.bigip.mixins.ToDictMixin

Base class for all BIG-IP® iControl REST API endpoints.

The BIG-IP® is represented by an object that converts device-published uri’s into Python objects. Each uri
maps to a Python object. The mechanism for instantiating these objects is the __getattr__ Special Function in
the LazyAttributeMixin. When a registered attribute is dot referenced, on the device object (e.g. bigip.ltm
or simply bigip), an appropriate object is instantiated and attributed to the referencing object:
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bigip.ltm = LTM(bigip)
bigip.ltm.nats
nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

This can be shortened to just the last line:

nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

Critically this enforces a convention relating device published uris to API objects, in a hierarchy similar to the
uri paths. I.E. the uri corresponding to a Nats object is mgmt/tm/ltm/nat/. If you query the BIG-IP’s uri
(e.g. print(bigip._meta_data[’uri’]) ), you’ll see that it ends in: /mgmt/tm/, if you query the ltm object’s uri
(e.g. print(bigip.ltm._meta_data[’uri’]) ) you’ll see it ends in /mgmt/tm/ltm/.

In general the objects build a required self._meta_data[’uri’] attribute by: 1. Inheriting this class. 2. calling
super(Subclass, self).__init__(container) 3. self.uri = self.container_uri[’uri’] + ‘/’ + self.__class__.__name__

The net result is a succinct mapping between uri’s and objects, that represents objects in a hierarchical relation-
ship similar to the device’s uri path hierarchy.

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.resource.OrganizingCollection(bigip)
Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect resources under them.

OrganizingCollection objects fulfill the following functions:

•represent a uri path fragment immediately ‘below’ /mgmt/tm

•provide a list of dictionaries that contain uri’s to other resources on the device.

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items
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create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.resource.Collection(container)
Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect a list of Resources

The Collection Resource is responsible for providing a list of Python objects, where each object represents a
unique URI, the URI contains the URI of the Collection at the front of its path, and the ‘kind’ of the URI-
associated-JSON has been registered with the attribute registry of the Collection subclass.

Note: Any subclass of this base class must have s at the end of its name unless it ends in s then it must have
_s.

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
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delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.resource.Resource(container)
Bases: f5.bigip.resource.ResourceBase

Base class to represent a Configurable Resource on the device.

Warning: Objects instantiated from subclasses of Resource do NOT contain a URI (self._meta_data[’uri’])
at instantiation!

Resource objects provide the interface for the Creation of new services on the device. Once a new service
has been created, (via self.create or self.load), the instance constructs its URI and stores it as
self._meta_data[’uri’].

It is an error to attempt to call create() or load() on an instance more than once.
self._meta_data[’uri’] MUST not be changed after creation or load.

Note: creation query args, and creation hash fragments are stored as separate _meta_data values.

By “Configurable” we mean that submitting JSON via the PUT method to the URI managed by subclasses of
Resource, changes the state of the corresponding service on the device.

It also means that the URI supports DELETE.

create(**kwargs)
Create the resource on the BIG-IP®.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BIG-IP®.
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load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BIG-IP®.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

update(**kwargs)
Update the configuration of the resource on the BIG-IP®.

This method uses HTTP PUT alter the resource state on the BIG-IP®.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

delete(**kwargs)
Delete the resource on the BIG-IP®.

Uses HTTP DELETE to delete the resource on the BIG-IP®.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BIG-IP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the un-
derlying requests.session.get method where it will be handled according to that API. THIS IS
HOW TO PASS QUERY-ARGS! :returns: bool – The objects exists on BIG-IP® or not. :raises:
requests.HTTPError, Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values
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refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

mixins module

class f5.bigip.mixins.ToDictMixin
Bases: object

Convert an object’s attributes to a dictionary

exception f5.bigip.mixins.LazyAttributesRequired
Bases: f5.sdk_exception.F5SDKError

Raised when a object accesses a lazy attribute that is not listed

class f5.bigip.mixins.LazyAttributeMixin
Bases: object

Allow attributes to be created lazily based on the allowed values

class f5.bigip.mixins.ExclusiveAttributesMixin
Bases: object

Overrides __setattr__ to remove exclusive attrs from the object.

class f5.bigip.mixins.UnnamedResourceMixin
Bases: object

This makes a resource object work if there is no name.

These objects do not support create or delete and are often found as Resources that are under an organiz-
ing collection. For example the mgmt/tm/sys/global-settings is one of these and has a kind of tm:sys:global-
settings:global-settingsstate and the URI does not match the kind.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation
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f5.common

Subpackages

Submodules

f5.common.constants module

f5.common.iapp_parser module

class f5.common.iapp_parser.IappParser(template_str)
Bases: object

template_sections = [u’presentation’, u’implementation’, u’html-help’, u’role-acl’]

tcl_list_for_attr_re = ‘{(\\s*\\w+\\s*)+}’

tcl_list_for_section_re = ‘(\\s*\\w+\\s*)+’

section_map = {u’html-help’: u’htmlHelp’, u’role-acl’: u’roleAcl’}

attr_map = {u’requires-modules’: u’requiresModules’}

sections_not_required = [u’html-help’, u’role-acl’]

tcl_list_patterns = {u’requires-modules’: ‘{(\\s*\\w+\\s*)+}’, u’role-acl’: ‘(\\s*\\w+\\s*)+’}

template_attrs = [u’description’, u’partition’, u’requires-modules’]

parse_template()
Parse the template string into a dict.

Find the (large) inner sections first, save them, and remove them from a modified string. Then find the
template attributes in the modified string.

Returns dictionary of parsed template

exception f5.common.iapp_parser.EmptyTemplateException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.CurlyBraceMismatchException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.NonextantSectionException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.NonextantTemplateNameException
Bases: f5.sdk_exception.F5SDKError

args

message

218 Chapter 3. Detailed Documentation



F5 Python SDK Documentation, Release 0.1.3

exception f5.common.iapp_parser.MalformedTCLListException
Bases: f5.sdk_exception.F5SDKError

args

message

f5.common.logger module

Module contents

f5.sdk_exception

A base exception for all exceptions in this library.

Base Exception

F5SDKError Import and subclass this exception in all exceptions in this library.

exception f5.sdk_exception.F5SDKError
Bases: exceptions.Exception

Import and subclass this exception in all exceptions in this library.
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Copyright

Copyright 2014-2016 F5 Networks Inc.
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CHAPTER 5

License

5.1 Apache V2.0

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

5.2 Contributor License Agreement

Individuals or business entities who contribute to this project must have completed and submitted the F5 Contributor
License Agreement to Openstack_CLA@f5.com prior to their code submission being included in this project.

223

http://www.apache.org/licenses/LICENSE-2.0
http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html
http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html
mailto:Openstack_CLA@f5.com


F5 Python SDK Documentation, Release 0.1.3

224 Chapter 5. License



Python Module Index

f
f5, 219
f5.bigip, 20
f5.bigip.cm, 22
f5.bigip.cm.device, 23
f5.bigip.cm.device_group, 25
f5.bigip.cm.traffic_group, 29
f5.bigip.ltm, 32
f5.bigip.ltm.monitor, 33
f5.bigip.ltm.nat, 121
f5.bigip.ltm.node, 123
f5.bigip.ltm.policy, 125
f5.bigip.ltm.pool, 134
f5.bigip.ltm.rule, 139
f5.bigip.ltm.snat, 142
f5.bigip.ltm.snat_translation, 147
f5.bigip.ltm.snatpool, 144
f5.bigip.ltm.virtual, 149
f5.bigip.ltm.virtual_address, 154
f5.bigip.mixins, 217
f5.bigip.net, 156
f5.bigip.net.arp, 157
f5.bigip.net.fdb, 181
f5.bigip.net.interface, 159
f5.bigip.net.route, 161
f5.bigip.net.route_domain, 164
f5.bigip.net.selfip, 166
f5.bigip.net.tunnels, 169
f5.bigip.net.vlan, 177
f5.bigip.resource, 210
f5.bigip.shared, 186
f5.bigip.shared.bigip_failover_state,

186
f5.bigip.shared.licensing, 187
f5.bigip.sys, 189
f5.bigip.sys.application, 189
f5.bigip.sys.db, 199
f5.bigip.sys.failover, 202
f5.bigip.sys.folder, 203
f5.bigip.sys.global_settings, 204

f5.bigip.sys.ntp, 205
f5.bigip.sys.performance, 209
f5.common, 219
f5.common.constants, 218
f5.common.iapp_parser, 218
f5.sdk_exception, 219

225



F5 Python SDK Documentation, Release 0.1.3

226 Python Module Index



Index

A
Actions (class in f5.bigip.ltm.policy), 131
Actions_s (class in f5.bigip.ltm.policy), 130
Activation (class in f5.bigip.shared.licensing), 187
All_Stats (class in f5.bigip.sys.performance), 209
Aplscript (class in f5.bigip.sys.application), 191
Aplscripts (class in f5.bigip.sys.application), 191
Applications (class in f5.bigip.sys.application), 190
args (f5.common.iapp_parser.CurlyBraceMismatchException

attribute), 218
args (f5.common.iapp_parser.EmptyTemplateException

attribute), 218
args (f5.common.iapp_parser.MalformedTCLListException

attribute), 219
args (f5.common.iapp_parser.NonextantSectionException

attribute), 218
args (f5.common.iapp_parser.NonextantTemplateNameException

attribute), 218
Arp (class in f5.bigip.net.arp), 158
Arps (class in f5.bigip.net.arp), 157
attr_map (f5.common.iapp_parser.IappParser attribute),

218

B
BigIP (class in f5.bigip), 21
Bigip_Failover_State (class in

f5.bigip.shared.bigip_failover_state), 186

C
Cm (class in f5.bigip.cm), 22
Collection (class in f5.bigip.resource), 214
Conditions (class in f5.bigip.ltm.policy), 133
Conditions_s (class in f5.bigip.ltm.policy), 132
create() (f5.bigip.BigIP method), 21
create() (f5.bigip.cm.Cm method), 22
create() (f5.bigip.cm.device.Device method), 23
create() (f5.bigip.cm.device.Devices method), 23
create() (f5.bigip.cm.device_group.Device_Group

method), 26
create() (f5.bigip.cm.device_group.Device_Groups

method), 25

create() (f5.bigip.cm.device_group.Devices method), 28
create() (f5.bigip.cm.device_group.Devices_s method),

27
create() (f5.bigip.cm.traffic_group.Traffic_Group

method), 30
create() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
create() (f5.bigip.ltm.Ltm method), 32
create() (f5.bigip.ltm.monitor.Diameter method), 40
create() (f5.bigip.ltm.monitor.Diameters method), 39
create() (f5.bigip.ltm.monitor.Dns method), 42
create() (f5.bigip.ltm.monitor.Dns_s method), 41
create() (f5.bigip.ltm.monitor.External method), 44
create() (f5.bigip.ltm.monitor.Externals method), 43
create() (f5.bigip.ltm.monitor.Firepass method), 46
create() (f5.bigip.ltm.monitor.Firepass_s method), 46
create() (f5.bigip.ltm.monitor.Ftp method), 49
create() (f5.bigip.ltm.monitor.Ftps method), 48
create() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
create() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
create() (f5.bigip.ltm.monitor.Http method), 35
create() (f5.bigip.ltm.monitor.HttpS method), 38
create() (f5.bigip.ltm.monitor.Https method), 35
create() (f5.bigip.ltm.monitor.Https_s method), 37
create() (f5.bigip.ltm.monitor.Icmp method), 53
create() (f5.bigip.ltm.monitor.Icmps method), 52
create() (f5.bigip.ltm.monitor.Imap method), 55
create() (f5.bigip.ltm.monitor.Imaps method), 54
create() (f5.bigip.ltm.monitor.Inband method), 57
create() (f5.bigip.ltm.monitor.Inbands method), 57
create() (f5.bigip.ltm.monitor.Ldap method), 60
create() (f5.bigip.ltm.monitor.Ldaps method), 59
create() (f5.bigip.ltm.monitor.Module_Score method), 62
create() (f5.bigip.ltm.monitor.Module_Scores method),

61
create() (f5.bigip.ltm.monitor.Mssql method), 66
create() (f5.bigip.ltm.monitor.Mssqls method), 65
create() (f5.bigip.ltm.monitor.Mysql method), 64
create() (f5.bigip.ltm.monitor.Mysqls method), 63
create() (f5.bigip.ltm.monitor.Nntp method), 68

227



F5 Python SDK Documentation, Release 0.1.3

create() (f5.bigip.ltm.monitor.Nntps method), 68
create() (f5.bigip.ltm.monitor.NONE method), 71
create() (f5.bigip.ltm.monitor.Nones method), 70
create() (f5.bigip.ltm.monitor.Oracle method), 73
create() (f5.bigip.ltm.monitor.Oracles method), 72
create() (f5.bigip.ltm.monitor.Pop3 method), 75
create() (f5.bigip.ltm.monitor.Pop3s method), 74
create() (f5.bigip.ltm.monitor.Postgresql method), 77
create() (f5.bigip.ltm.monitor.Postgresqls method), 76
create() (f5.bigip.ltm.monitor.Radius method), 79
create() (f5.bigip.ltm.monitor.Radius_Accounting

method), 82
create() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
create() (f5.bigip.ltm.monitor.Radius_s method), 79
create() (f5.bigip.ltm.monitor.Real_Server method), 84
create() (f5.bigip.ltm.monitor.Real_Servers method), 83
create() (f5.bigip.ltm.monitor.Rpc method), 86
create() (f5.bigip.ltm.monitor.Rpcs method), 85
create() (f5.bigip.ltm.monitor.Sasp method), 88
create() (f5.bigip.ltm.monitor.Sasps method), 87
create() (f5.bigip.ltm.monitor.Scripted method), 90
create() (f5.bigip.ltm.monitor.Scripteds method), 90
create() (f5.bigip.ltm.monitor.Sip method), 93
create() (f5.bigip.ltm.monitor.Sips method), 92
create() (f5.bigip.ltm.monitor.Smb method), 95
create() (f5.bigip.ltm.monitor.Smbs method), 94
create() (f5.bigip.ltm.monitor.Smtp method), 97
create() (f5.bigip.ltm.monitor.Smtps method), 96
create() (f5.bigip.ltm.monitor.Snmp_Dca method), 99
create() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

101
create() (f5.bigip.ltm.monitor.Snmp_Dca_Bases method),

101
create() (f5.bigip.ltm.monitor.Snmp_Dcas method), 98
create() (f5.bigip.ltm.monitor.Soap method), 104
create() (f5.bigip.ltm.monitor.Soaps method), 103
create() (f5.bigip.ltm.monitor.Tcp method), 106
create() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
create() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
create() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

110
create() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

109
create() (f5.bigip.ltm.monitor.Tcps method), 105
create() (f5.bigip.ltm.monitor.Udp method), 112
create() (f5.bigip.ltm.monitor.Udps method), 112
create() (f5.bigip.ltm.monitor.Virtual_Location method),

115
create() (f5.bigip.ltm.monitor.Virtual_Locations method),

114
create() (f5.bigip.ltm.monitor.Wap method), 117
create() (f5.bigip.ltm.monitor.Waps method), 116
create() (f5.bigip.ltm.monitor.Wmi method), 119

create() (f5.bigip.ltm.monitor.Wmis method), 118
create() (f5.bigip.ltm.nat.Nat method), 122
create() (f5.bigip.ltm.nat.Nats method), 121
create() (f5.bigip.ltm.node.Node method), 124
create() (f5.bigip.ltm.node.Nodes method), 123
create() (f5.bigip.ltm.policy.Actions method), 131
create() (f5.bigip.ltm.policy.Actions_s method), 130
create() (f5.bigip.ltm.policy.Conditions method), 133
create() (f5.bigip.ltm.policy.Conditions_s method), 132
create() (f5.bigip.ltm.policy.Policy method), 126
create() (f5.bigip.ltm.policy.Policys method), 126
create() (f5.bigip.ltm.policy.Rules method), 129
create() (f5.bigip.ltm.policy.Rules_s method), 128
create() (f5.bigip.ltm.pool.Members method), 138
create() (f5.bigip.ltm.pool.Members_s method), 137
create() (f5.bigip.ltm.pool.Pool method), 135
create() (f5.bigip.ltm.pool.Pools method), 135
create() (f5.bigip.ltm.rule.Rule method), 140
create() (f5.bigip.ltm.rule.Rules method), 139
create() (f5.bigip.ltm.snat.Snat method), 143
create() (f5.bigip.ltm.snat.Snats method), 142
create() (f5.bigip.ltm.snat_translation.Snat_Translation

method), 148
create() (f5.bigip.ltm.snat_translation.Snat_Translations

method), 147
create() (f5.bigip.ltm.snatpool.Snatpool method), 145
create() (f5.bigip.ltm.snatpool.Snatpools method), 144
create() (f5.bigip.ltm.virtual.Profiles method), 152
create() (f5.bigip.ltm.virtual.Profiles_s method), 153
create() (f5.bigip.ltm.virtual.Virtual method), 150
create() (f5.bigip.ltm.virtual.Virtuals method), 149
create() (f5.bigip.ltm.virtual_address.Virtual_Address

method), 155
create() (f5.bigip.ltm.virtual_address.Virtual_Address_s

method), 154
create() (f5.bigip.mixins.UnnamedResourceMixin

method), 217
create() (f5.bigip.net.arp.Arp method), 158
create() (f5.bigip.net.arp.Arps method), 157
create() (f5.bigip.net.fdb.Fdbs method), 182
create() (f5.bigip.net.fdb.Tunnel method), 182
create() (f5.bigip.net.fdb.Tunnels method), 184
create() (f5.bigip.net.fdb.Vlans method), 185
create() (f5.bigip.net.interface.Interface method), 160
create() (f5.bigip.net.interface.Interfaces method), 159
create() (f5.bigip.net.route.Route method), 162
create() (f5.bigip.net.route.Routes method), 162
create() (f5.bigip.net.route_domain.Route_Domain

method), 165
create() (f5.bigip.net.route_domain.Route_Domains

method), 164
create() (f5.bigip.net.selfip.Selfip method), 168
create() (f5.bigip.net.selfip.Selfips method), 167
create() (f5.bigip.net.tunnels.Gre method), 173

228 Index



F5 Python SDK Documentation, Release 0.1.3

create() (f5.bigip.net.tunnels.Gres method), 172
create() (f5.bigip.net.tunnels.Tunnel method), 171
create() (f5.bigip.net.tunnels.Tunnels method), 170
create() (f5.bigip.net.tunnels.Tunnels_s method), 169
create() (f5.bigip.net.tunnels.Vxlan method), 175
create() (f5.bigip.net.tunnels.Vxlans method), 174
create() (f5.bigip.net.vlan.Interfaces method), 180
create() (f5.bigip.net.vlan.Interfaces_s method), 179
create() (f5.bigip.net.vlan.Vlan method), 178
create() (f5.bigip.net.vlan.Vlans method), 177
create() (f5.bigip.resource.Collection method), 214
create() (f5.bigip.resource.OrganizingCollection

method), 213
create() (f5.bigip.resource.Resource method), 215
create() (f5.bigip.resource.ResourceBase method), 213
create() (f5.bigip.shared.bigip_failover_state.Bigip_Failover_State

method), 186
create() (f5.bigip.shared.licensing.Activation method),

187
create() (f5.bigip.shared.licensing.Registration method),

188
create() (f5.bigip.sys.application.Aplscript method), 191
create() (f5.bigip.sys.application.Aplscripts method), 191
create() (f5.bigip.sys.application.Applications method),

190
create() (f5.bigip.sys.application.Customstat method),

194
create() (f5.bigip.sys.application.Customstats method),

193
create() (f5.bigip.sys.application.Service method), 196
create() (f5.bigip.sys.application.Services method), 195
create() (f5.bigip.sys.application.Template method), 198
create() (f5.bigip.sys.application.Templates method), 197
create() (f5.bigip.sys.db.Db method), 200
create() (f5.bigip.sys.db.Dbs method), 200
create() (f5.bigip.sys.failover.Failover method), 202
create() (f5.bigip.sys.folder.Folders method), 203
create() (f5.bigip.sys.global_settings.Global_Settings

method), 204
create() (f5.bigip.sys.ntp.Ntp method), 205
create() (f5.bigip.sys.ntp.Restrict method), 207
create() (f5.bigip.sys.ntp.Restricts method), 206
create() (f5.bigip.sys.performance.All_Stats method),

210
create() (f5.bigip.sys.performance.Performance method),

209
CurlyBraceMismatchException, 218
Customstat (class in f5.bigip.sys.application), 194
Customstats (class in f5.bigip.sys.application), 193

D
Db (class in f5.bigip.sys.db), 200
Dbs (class in f5.bigip.sys.db), 199
delete() (f5.bigip.BigIP method), 21

delete() (f5.bigip.cm.Cm method), 22
delete() (f5.bigip.cm.device.Device method), 24
delete() (f5.bigip.cm.device.Devices method), 23
delete() (f5.bigip.cm.device_group.Device_Group

method), 26
delete() (f5.bigip.cm.device_group.Device_Groups

method), 25
delete() (f5.bigip.cm.device_group.Devices method), 28
delete() (f5.bigip.cm.device_group.Devices_s method),

27
delete() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
delete() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
delete() (f5.bigip.ltm.Ltm method), 32
delete() (f5.bigip.ltm.monitor.Diameter method), 40
delete() (f5.bigip.ltm.monitor.Diameters method), 39
delete() (f5.bigip.ltm.monitor.Dns method), 42
delete() (f5.bigip.ltm.monitor.Dns_s method), 41
delete() (f5.bigip.ltm.monitor.External method), 44
delete() (f5.bigip.ltm.monitor.Externals method), 44
delete() (f5.bigip.ltm.monitor.Firepass method), 47
delete() (f5.bigip.ltm.monitor.Firepass_s method), 46
delete() (f5.bigip.ltm.monitor.Ftp method), 49
delete() (f5.bigip.ltm.monitor.Ftps method), 48
delete() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
delete() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
delete() (f5.bigip.ltm.monitor.Http method), 36
delete() (f5.bigip.ltm.monitor.HttpS method), 38
delete() (f5.bigip.ltm.monitor.Https method), 35
delete() (f5.bigip.ltm.monitor.Https_s method), 37
delete() (f5.bigip.ltm.monitor.Icmp method), 53
delete() (f5.bigip.ltm.monitor.Icmps method), 52
delete() (f5.bigip.ltm.monitor.Imap method), 55
delete() (f5.bigip.ltm.monitor.Imaps method), 55
delete() (f5.bigip.ltm.monitor.Inband method), 58
delete() (f5.bigip.ltm.monitor.Inbands method), 57
delete() (f5.bigip.ltm.monitor.Ldap method), 60
delete() (f5.bigip.ltm.monitor.Ldaps method), 59
delete() (f5.bigip.ltm.monitor.Module_Score method), 62
delete() (f5.bigip.ltm.monitor.Module_Scores method),

61
delete() (f5.bigip.ltm.monitor.Mssql method), 66
delete() (f5.bigip.ltm.monitor.Mssqls method), 66
delete() (f5.bigip.ltm.monitor.Mysql method), 64
delete() (f5.bigip.ltm.monitor.Mysqls method), 63
delete() (f5.bigip.ltm.monitor.Nntp method), 69
delete() (f5.bigip.ltm.monitor.Nntps method), 68
delete() (f5.bigip.ltm.monitor.NONE method), 71
delete() (f5.bigip.ltm.monitor.Nones method), 70
delete() (f5.bigip.ltm.monitor.Oracle method), 73
delete() (f5.bigip.ltm.monitor.Oracles method), 72
delete() (f5.bigip.ltm.monitor.Pop3 method), 75

Index 229



F5 Python SDK Documentation, Release 0.1.3

delete() (f5.bigip.ltm.monitor.Pop3s method), 74
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