

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	F5 Python SDK 0.1.1a3 documentation

F5 Python SDK Documentation

[image: Build Status] [https://travis-ci.org/F5Networks/f5-common-python] [image: Documentation Status] [http://f5-sdk.readthedocs.org/en/latest/?badge=latest]

Introduction

This project implements an object model based SDK for the F5 Networks BigIP
iControl REST interface. Users of this library can create, edit, update, and
delete configuration objects on a BigIP device. For more information on the
basic principals that the SDK uses see the User Guide.

Quick Start

Installation

$> pip install f5-sdk

Note

If you are using a pre-release version you must use the --pre
option with the pip command.

Basic Example

from f5.bigip import BigIP

Connect to the BigIP
bigip = BigIP("bigip.example.com", "admin", "somepassword")

Get a list of all pools on the BigIP and print their name and their
members' name
pools = bigip.ltm.pools.get_collection()
for pool in pools:
 print pool.name
 for member in pool.members_s.get_collection():
 print member.name

Create a new pool on the BigIP
mypool = bigip.ltm.pools.pool.create(name='mypool', partition='Common')

Load an existing pool and update its description
pool_a = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_a.description = "New description"
pool_a.update()

Delete a pool if it exists
if bigip.ltm.pools.pool.exists(name='mypool', partition='Common'):
 pool_b = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
 pool_b.delete()

Detailed Documentation

	User Guide
	Basic Concepts
	REST URIs

	REST Endpoints

	Dynamic Attributes

	iControl REST kind Parameters

	Methods

	REST API Endpoints
	Overview
	REST URI Segments

	Endpoints
	Organizing Collection

	Collection

	Resource

	Subcollection

	Subcollection Resource

	Python Object Paths
	Organizing Collection

	Collection

	Resource

	Subcollection

	Subcollection Resource

	Coding Example

	Further Reading

	Developer Guide

	F5 SDK API Docs
	f5 package
	f5.bigip
	f5.bigip module

	resource module

	mixins module

	f5.common
	Subpackages

	Submodules

	f5.common.constants module

	f5.common.iapp_parser module

	f5.common.logger module

	Module contents

	f5.sdk_exception
	Base Exception

Contact

f5_common_python@f5.com

Copyright

Copyright 2014-2016 F5 Networks Inc.

Support

Maintenance and support of the unmodified F5 code is provided only to customers
who have an existing support contract, purchased separately subject to F5’s
support policies available at http://www.f5.com/about/guidelines-policies/ and
http://askf5.com. F5 will not provide maintenance and support services of
modified F5 code or code that does not have an existing support contract.

License

Apache V2.0

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations
under the License.

Contributor License Agreement

Individuals or business entities who contribute to this project must have
completed and submitted the F5 Contributor License Agreement [http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html]
to Openstack_CLA@f5.com prior to their code submission being included in this
project.

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

User Guide

To get the most out of using our SDK, it’s useful to understand the basic
concepts and principals we used when we designed it. It is also important
that you are familiar with the F5 BIG-IP and, at a minimum, how to configure BIG-IP
using the configuration utility (the GUI). More useful still would be if you are already familiar with the
iControl REST API [https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx].

	Basic Concepts
	REST URIs

	REST Endpoints

	Dynamic Attributes

	iControl REST kind Parameters

	Methods

	REST API Endpoints
	Overview
	REST URI Segments

	Endpoints
	Organizing Collection

	Collection

	Resource

	Subcollection

	Subcollection Resource

	Python Object Paths
	Organizing Collection

	Collection

	Resource

	Subcollection

	Subcollection Resource

	Coding Example

	Further Reading

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

Basic Concepts

Familiarizing yourself with the following underlying basic concepts will help you get up and running with the SDK.

Important

When using the SDK, you’ll notice that collection objects are referenced using the plural version of the Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to the name when referring to the object.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

	LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path f5.bigip.pools.get_collection().

	Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via f5.bigip.net.tunnels_s.get_collection().

REST URIs

You can directly infer REST URIs from the python expressions, and vice versa.

Examples

Expression: bigip = BigIP('a', 'b', 'c')
URI Returned: https://a/mgmt/tm/

Expression: bigip.ltm
URI Returned: https://a/mgmt/tm/ltm/

Expression: pools1 = bigip.ltm.pools
URI Returned: https://a/mgmt/tm/ltm/pool

Expression: pool_a = pools1.create(partition="Common", name="foo")
URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

REST Endpoints

A set of basic REST endpoints can be derived from the object’s URI and kind (listed below).

	Organizing Collection

	Collection

	Resource

	Subcollection

	Subcollection Resource

Dynamic Attributes

The python object’s attribute can be created dynamically based on the JSON returned when querying the REST API.

iControl REST kind Parameters

Almost all iControl REST API entries contain a parameter named kind. This parameter provides information about the object that lets you know what you should expect to follow it. The iControl REST API uses three types of kind: collectionstate, state, and stats.

	kind
	Associated Objects
	Methods

	collectionstate
	OrganizingCollection,
Collection
	exists()

	state
	Resource
	create(), update(), refresh(), delete(),
load(), exists()

	stats
	Resource
	refresh(), load(), exists()

Methods

	Method
	HTTP Command
	Action(s)

	create()
	POST
	
creates a new resource on the device with its own URI

	update()
	PUT
	
submits a new configuration to the device resource; sets the

Resource attributes to the state reported by the device

	refresh()
	GET
	
obtains the state of a device resource; sets the representing

Python Resource Object; tracks device state via its attributes

	delete()
	DELETE
	
removes the resource from the device, sets self.__dict__

to {'deleted': True}

	load()
	GET
	
obtains the state of an existing resource on the device; sets

the Resource attributes to match that state

	exists()
	GET
	
checks for the existence of a named object on the BigIP

Note

Available methods are restricted according to the object’s kind.

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

REST API Endpoints

Overview

REST URI Segments

We’ll start exploring the iControl REST API’s endpoints with an example detailing how the endpoint types map to the different parts of the URI. The different types of resources used by the SDK shown in the example are explained in detail later in this guide.

Example: The URI below returns the JSON for an LTM pool member.

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
 |-------|---|----|--------------|-------|-------------|
 OC OC Coll Resource SC SubColl Resrc

	OC
	Organizing Collection

	Coll
	Collection

	Resource
	Resource

	SC
	Subcollection

	SubColl Resrc
	Subcollection Resource

Endpoints

	Organizing Collection

	Collection

	Resource

	Subcollection

	Subcollection Resource

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

 	REST API Endpoints

Organizing Collection

kind: collectionstate

The iControl REST User Guide [https://devcentral.f5.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160] defines an organizing collection as a URI that designates all of the tmsh subordinate modules and components in the specified module. Organizing collections, which appear directly under f5.bigip, correspond to the various modules available on the BIG-IP (for example, f5.bigip.ltm).

The organizing collection names correspond to the items that appear in the drawers on the left-hand side of the BIG-IP configuration utility (the GUI). The module names are abbreviated in the REST API, but the mapping is otherwise pretty straightforward. For example, the SDK module f5.bigip.sys maps to the System drawer in the GUI.

OrganizingCollection objects do not have configuration parameters. As shown in the example below, the JSON blob received in response to an HTTP GET for an organizing collection object contains an items parameter with a list of references to Collection and Resource objects.

Example

{
 "kind":"tm:ltm:ltmcollectionstate",
 "selfLink":"https://localhost/mgmt/tm/ltm?ver=11.5.0",
 "items":[
 {
 "reference":{
 "link":"https://../mgmt/tm/ltm/auth?ver=11.5.0"
 }
 },
 {
 "reference":{
 "link":"https://../mgmt/tm/ltm/classification?ver=11.5.0"
 }
 },
]
}

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

 	REST API Endpoints

Collection

kind: collectionstate

A collection is similar to an Organizing Collection in that no configurations can be applied to it. A collection differs from an organizing collection in that a collection only contains references to objects of the same type in its items parameter.

Important

When using the SDK, you’ll notice that collection objects are referenced using the plural version of the Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to the name when referring to the object.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

	LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path f5.bigip.pools.get_collection().

	Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via f5.bigip.net.tunnels_s.get_collection().

You can use get_collection() to get a list of the objects in the collection.

The example below shows the JSON you would get back from a REST collection
endpoint. Note that it contains an items attribute that contains
Resource objects (we know the objects are resources because their kind ends in state).

Example

{
 kind: "tm:ltm:pool:poolcollectionstate",
 selfLink: "https://localhost/mgmt/tm/ltm/pool?ver=11.6.0",
 items: [
 {
 kind: "tm:ltm:pool:poolstate",
 name: "my_newpool",
 partition: "Common",
 fullPath: "/Common/my_newpool",
 generation: 76,
 selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool?ver=11.6.0",
 allowNat: "yes",
 allowSnat: "yes",
 description: "This is my pool",
 ignorePersistedWeight: "disabled",
 ipTosToClient: "pass-through",
 ipTosToServer: "pass-through",
 linkQosToClient: "pass-through",
 linkQosToServer: "pass-through",
 loadBalancingMode: "round-robin",
 minActiveMembers: 0,
 minUpMembers: 0,
 minUpMembersAction: "failover",
 minUpMembersChecking: "disabled",
 queueDepthLimit: 0,
 queueOnConnectionLimit: "disabled",
 queueTimeLimit: 0,
 reselectTries: 0,
 serviceDownAction: "none",
 slowRampTime: 10,
 membersReference: {
 link: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool/members?ver=11.6.0",
 isSubcollection: true
 }
 },
 {
 kind: "tm:ltm:pool:poolstate",
 name: "mypool",
 partition: "Common",
 fullPath: "/Common/mypool",
 generation: 121,
 selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0",
 allowNat: "yes",
 allowSnat: "yes",
 ignorePersistedWeight: "disabled",
 ipTosToClient: "pass-through",
 ipTosToServer: "pass-through",
 linkQosToClient: "pass-through",
 linkQosToServer: "pass-through",
 loadBalancingMode: "round-robin",
 minActiveMembers: 0,
 minUpMembers: 0,
 minUpMembersAction: "failover",
 minUpMembersChecking: "disabled",
 queueDepthLimit: 0,
 queueOnConnectionLimit: "disabled",
 queueTimeLimit: 0,
 reselectTries: 0,
 serviceDownAction: "none",
 slowRampTime: 10,
 membersReference: {
 link: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0",
 isSubcollection: true
 }
 },
]
}

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

 	REST API Endpoints

Resource

kind: state

A resource is a fully configurable object for which the CURDLE methods are supported.

	create()

	refresh()

	update()

	delete()

	load()

	exists()

When using the SDK, you will notice that resources are instantiated via their collection. Once created or loaded, resources contain attributes that map to the JSON fields returned by the BIG-IP.

Example

To load a f5.bigip.ltm.node.Node object, you would use the following code.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> n = bigip.ltm.nodes.node.load(partition='Common', name='192.168.15.15')
>>> print n.raw
{
 "kind":"tm:ltm:node:nodestate",
 "name":"192.168.15.15",
 "partition":"Common",
 "fullPath":"/Common/192.168.15.15",
 "generation":16684,
 "selfLink":"https://localhost/mgmt/tm/ltm/node/~Common~192.168.15.15?ver=11.6.0",
 "address":"192.168.15.15",
 "connectionLimit":0,
 "dynamicRatio":1,
 "ephemeral":"false",
 "fqdn":{
 "addressFamily":"ipv4",
 "autopopulate":"disabled",
 "downInterval":5,
 "interval":3600
 },
 "logging":"disabled",
 "monitor":"default",
 "rateLimit":"disabled",
 "ratio":1,
 "session":"user-enabled",
 "state":"unchecked"
}

The output of the f5.bigip.ltm.node.Node.raw shows all of the available attributes.

Once you have loaded the object, you can access the attributes as shown below.

>>> n.fqdn['downInterval'] = 10
>>> n.logging = 'enabled'
>>> n.update()

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

 	REST API Endpoints

Subcollection

kind: collectionstate

A subcollection is a Collection that’s attached to a higher-level Resource object. Subcollections are almost exactly the same as collections; the exception is that they can only be accessed via the resource they’re attached to (the ‘parent’ resource). A subcollection can be identified by the value isSubcollection: true, followed by an items attribute listing the subcollection’s resources. Just as with
collections, you can use :meth:`~f5.bigip.resource.Collection

.get_collection` to get a list of the resources in the subcollection.

Example

A pool resource has a members_s subcollection attached to it; you must create or load the ‘parent’ resource (pool) before you can access the subcollection (members_s).

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> members = pool.members_s.get_collection()

Note

In the above example, the subcollection object – members_s – ends
in _s because the subcollection resource object name (members)
is already plural.

The JSON returned for a pool with one member is shown below. Note the
highlighted rows, which indicate the subcollection.

Example

{
 "kind": "tm:ltm:pool:poolstate",
 "name": "p1",
 "partition": "Common",
 "fullPath": "/Common/p1",
 "generation": 18703,
 "selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1?expandSubcollections=true&ver=11.6.0",
 "allowNat": "yes",
 "allowSnat": "yes",
 "ignorePersistedWeight": "disabled",
 "ipTosToClient": "pass-through",
 "ipTosToServer": "pass-through",
 "linkQosToClient": "pass-through",
 "linkQosToServer": "pass-through",
 "loadBalancingMode": "round-robin",
 "minActiveMembers": 0,
 "minUpMembers": 0,
 "minUpMembersAction": "failover",
 "minUpMembersChecking": "disabled",
 "queueDepthLimit": 0,
 "queueOnConnectionLimit": "disabled",
 "queueTimeLimit": 0,
 "reselectTries": 0,
 "serviceDownAction": "none",
 "slowRampTime": 10,
 "membersReference": {
 "link": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members?ver=11.6.0",
 "isSubcollection": true,
 "items": [
 {
 "kind": "tm:ltm:pool:members:membersstate",
 "name": "n1:80",
 "partition": "Common",
 "fullPath": "/Common/n1:80",
 "generation": 18703,
 "selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
 "address": "192.168.51.51",
 "connectionLimit": 0,
 "dynamicRatio": 1,
 "ephemeral": "false",
 "fqdn": {
 "autopopulate": "disabled",
 }
 "inheritProfile": "enabled",
 "logging": "disabled",
 "monitor": "default",
 "priorityGroup": 0,
 "rateLimit": "disabled",
 "ratio": 1,
 "session": "user-enabled",
 "state": "unchecked",
 }
]
 },
}

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

 	REST API Endpoints

Subcollection Resource

kind: state

A subcollection resource is essentially the same as a resource. As with collections and subcollections, the only difference between the two is that you must access the subcollection resource via the subcollection attached to the main resource.

Example

To build on the subcollection example: pool is the resource, members_s is the subcollection, and members (the actual pool member) is the subcollection resource.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> member = pool.members_s.member.load(partition='Common', name='n1:80')

The JSON below shows a f5.bigip.ltm.pool.members_s.members object.

{
 "kind": "tm:ltm:pool:members:membersstate",
 "name": "n1:80",
 "partition": "Common",
 "fullPath": "/Common/n1:80",
 "generation": 18703,
 "selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
 "address": "192.168.51.51",
 "connectionLimit": 0,
 "dynamicRatio": 1,
 "ephemeral": "false",
 "fqdn": {
 "autopopulate": "disabled",
 }
 "inheritProfile": "enabled",
 "logging": "disabled",
 "monitor": "default",
 "priorityGroup": 0,
 "rateLimit": "disabled",
 "ratio": 1,
 "session": "user-enabled",
 "state": "unchecked",
}

Tip

It’s easy to tell that this is a Resource object because the kind is state, not collectionstate.

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

Python Object Paths

The object classes used in the SDK directly correspond to the REST endpoints you’d use to access the objects via the API. Remembering the patterns below will help you easily derive an SDK object class from an object URI.

	Objects take the form f5.<product>.<organizing_collection>.<collection>.<resource>.<subcollection>.<resource>.

	The collection and the resource generally have the same name, so the collection is the plural version of the resource. This means that you add s to the end of the resource to get the collection, unless the resource already ends in s. If the resource is already plural, add _s to get the collection.

	The object itself is accessed by its CamelCase name, but the usage of the object is all lowercase.

	The characters . and - are always replaced with _ in the SDK.

Because the REST API endpoints have a hierarchical structure, you need to load/create the highest-level objects before you can load lower-level ones. The example below shows how the pieces of the URI correspond to the REST endpoints/SDK classes. The first part of the URI is the IP address of your BIG-IP device.

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
 |-------|---|----|--------------|-------|-------------|
 OC OC Coll Resource SC SubColl Resrc

	OC
	Organizing Collection

	Coll
	Collection

	Resource
	Resource

	SC
	Subcollection

	SubColl Resrc
	Subcollection Resource

In the sections below, we’ll walk through the Python object paths using LTM pools and pool members as examples. You can also skip straight to the Coding Example.

Organizing Collection

The mgmt/tm and ltm organizing collections define what area of the BIG-IP you’re going to work with. The mgmt/tm organizing collection corresponds to the management plane of your BIG-IP device (TMOS). Loading ltm indicates that we’re going to work with the BIG-IP’s Local Traffic module.

	Endpoint
	http://192.168.1.1/mgmt/tm/

	Kind
	tm:restgroupresolverviewstate

	Type
	organizing collection

	Class
	f5.bigip.BigIP

	Instantiation
	bigip = BigIP('192.168.1.1', 'myuser', 'mypass')

	Endpoint
	http://192.168.1.1/mgmt/tm/ltm

	Kind
	tm:ltm:collectionstate

	Type
	organizing collection

	Class
	f5.bigip.ltm

	Instantiation
	ltm = bigip.ltm

Example: Connect to the BIG-IP and load the LTM module

from f5.bigip import BigIP
bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
ltm = bigip.ltm

>>> print bigip
<f5.bigip.BigIP object at 0x8a29d0>

>>> print ltm
<f5.bigip.ltm.LTM object at 0x8c0b30>

Collection

Now that the higher-level organizing collections are loaded (in other words, we’re signed in to the BIG-IP and accessed the LTM module), we can load the pool collection.

	Endpoint
	http://192.168.1.1/mgmt/tm/ltm/pool

	Kind
	tm:ltm:pool:poolcollectionstate

	Type
	collection

	Class
	f5.bigip.ltm.pool.Pools

	Instantiation
	pools = bigip.ltm.pools

Example: Load the pool collection

from f5.bigip import BigIP

bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
pool_collection = bigip.ltm.pools
pools = bigip.ltm.pools.get_collection()

for pool in pools:
 print pool.name

my_newpool
mypool
pool2
pool_1

In the above example, we instantiated the class f5.bigip.ltm.pool.Pools, then used the f5.bigip.ltm.pool.Pools.get_collection() method to fetch the collection (in other words, a list of the pool resources configured on the BIG-IP).

Resource

In the SDK, we refer to a single instance of a configuration object as a resource. As shown in the previous sections, we are able to access the pool resources on the BIG-IP after loading the mgmt\tm\ltm organizing collections and the pools collection.

	Endpoint
	http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/

	Kind
	tm:ltm:pool:poolstate

	Type
	resource

	Class
	f5.bigip.ltm.pool.Pool

	Instantiation
	pool = pools.pool.load(partition='Common', name='mypool')

Example: Load a pools collection

from f5.bigip import BigIP
pool = pools.pool.load(partition='Common', name='mypool')

In the example above, we instantiated the class f5.bigip.ltm.pool.Pool and loaded the f5.bigip.ltm.pools.pool object. The object is a python representation of the BIG-IP pool we loaded (in this case, Common/mypool).

Tip

You can always see the representation of an object using the raw() method.

>>> pool.raw
{
 u'generation': 123,
 u'minActiveMembers': 0,
 u'ipTosToServer': u'pass-through',
 u'loadBalancingMode': u'round-robin',
 u'allowNat': u'yes',
 u'queueDepthLimit': 0,
 u'membersReference': {
 u'isSubcollection': True,
 u'link': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0'},
 u'minUpMembers': 0, u'slowRampTime': 10,
 u'minUpMembersAction': u'failover',
 '_meta_data': {
 'attribute_registry': {
 'tm:ltm:pool:memberscollectionstate': <class 'f5.bigip.ltm
 .pool.Members_s'>
 },
 'container': <f5.bigip.ltm.pool.Pools object at 0x835ef0>,
 'uri': u'https://10.190.6.253/mgmt/tm/ltm/pool/~Common~mypool/',
 'exclusive_attributes': [],
 'read_only_attributes': [],
 'allowed_lazy_attributes': [<class 'f5.bigip.ltm.pool.Members_s'>],
 'required_refresh_parameters': set(['name']),
 'required_json_kind': 'tm:ltm:pool:poolstate',
 'bigip': <f5.bigip.BigIP object at 0x5826f0>,
 'required_creation_parameters': set(['name']),
 'creation_uri_frag': '',
 'creation_uri_qargs': {u'ver': [u'11.6.0']}
 },
 u'minUpMembersChecking': u'disabled',
 u'queueTimeLimit': 0,
 u'linkQosToServer': u'pass-through',
 u'queueOnConnectionLimit': u'disabled',
 u'fullPath': u'/Common/mypool',
 u'kind': u'tm:ltm:pool:poolstate',
 u'name': u'mypool',
 u'partition': u'Common',
 u'allowSnat': u'yes',
 u'ipTosToClient': u'pass-through',
 u'reselectTries': 0,
 u'selfLink': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0',
 u'serviceDownAction': u'none',
 u'ignorePersistedWeight': u'disabled',
 u'linkQosToClient': u'pass-through'
 }

Subcollection

A subcollection is a collection of resources that can only be accessed via its parent resource.

To continue our example: The f5.bigip.ltm.pool.Pool resource object contains f5.bigip.ltm.pool.Member subcollection resource objects. These subcollection resources – the real-servers that are attached to the pool, or ‘pool members’ – are part of the members_s subcollection. (Remember, we have to add _s to the end of collection object names if the name of the resource object it contains already ends in s).

	Endpoint
	http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members

	Kind
	tm:ltm:pool:members:memberscollectionstate

	Type
	subcollection

	Class
	f5.bigip.ltm.pool.Members_s

	Instantiation
	members = pool.members_s

Example: Load the members_s collection

from f5.bigip import BigIP
members = pool.members_s.get_collection()
print members
[<f5.bigip.ltm.pool.Members object at 0x9d7ff0>, <f5.bigip.ltm.pool.Members object at 0x9d7830>]

Subcollection Resource

As explained in the previous section, a subcollection contains subcollection resources. These subcollection resources can only be loaded after all of the parent objects (organizing collections, resource, and subcollection) have been loaded.

	Endpoint
	http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1

	Kind
	tm:ltm:pool:members:membersstate

	Type
	subcollection resource

	Class
	f5.bigip.ltm.pool.Members

	Instantiation
	members = pool.members_s.members.load(partition='Common', name='member1:<port>')

Example: Load member objects

from f5.bigip import BigIP
member = members_s.members.load(partition='Common', name='m1')
print member
<f5.bigip.ltm.pool.Members object at 0x9fd530>

Coding Example

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

Coding Example

Managing LTM Pools and Members via the F5 SDK

from f5.bigip import BigIP

Connect to the BigIP and configure the basic objects
bigip = BigIP('10.190.6.253', 'admin', 'default')
ltm = bigip.ltm
pools = bigip.ltm.pools.get_collection()
pool = bigip.ltm.pools.pool

Define a pool object and load an existing pool
pool_obj = bigip.ltm.pools.pool
pool_1 = pool_obj.load(partition='Common', name='mypool')

We can also create the object and load the pool at the same time
pool_2 = bigip.ltm.pools.pool.load(partition='Common', name='mypool')

Print the object
print pool_1.raw

Make sure 1 and 2 have the same names and generation
assert pool_1.name == pool_2.name
assert pool_1.generation == pool_2.generation

Update the description
pool_1.description = "This is my pool"
pool_1.update()

Check the updated description
print pool_1.description

Since we haven't refreshed pool_2 it shouldn't match pool_1 any more
assert pool_1.generation > pool_2.generation

Refresh pool_2 and check that is now equal
pool_2.refresh()
assert pool_1.generation == pool_2.generation

print pool_1.generation
print pool_2.generation

Create members on pool_1

members = pool_1.members_s.get_collection()
member = pool_1.members_s.members

m1 = pool_1.members_s.members.create(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.create(partition='Common', name='m2:80')

load the pool members
m1 = pool_1.members_s.members.load(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.load(partition='Common', name='m2:80')

Get all of the pool members for pool_1 and print their names

for member in members:
 print member.name

Delete our pool member m1
m1.delete()

Make sure it is gone
if pool_1.members_s.members.exists(partition='Common', name='m1:80'):
raise Exception("Object should have been deleted")

We are done with this pool so remove it from bigip
pool_1.delete()

Make sure it is gone

if bigip.ltm.pools.pool.exists(partition='Common', name='mypool'):
 raise Exception("Object should have been deleted")

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	User Guide

Further Reading

	F5 SDK API Docs

	F5 iControl REST DevCentral Site [https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx]

	F5 iControl REST API Reference [https://devcentral.f5.com/d/icontrol-rest-api-reference-version-120?download=true]

	F5 iControl REST API Guide [https://devcentral.f5.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160?download=true]

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

Developer Guide

COMING SOON

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

f5

	f5 package
	f5.bigip
	f5.bigip module
	Organizing Collection Modules

	Resource Base Classes

	Resource Exceptions

	Mixins

	resource module

	mixins module

	f5.common
	Subpackages

	Submodules

	f5.common.constants module

	f5.common.iapp_parser module

	f5.common.logger module

	Module contents

	f5.sdk_exception
	Base Exception

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

f5 package

	f5.bigip
	f5.bigip module
	Organizing Collection Modules

	Resource Base Classes

	Resource Exceptions

	Mixins

	resource module

	mixins module

	f5.common
	Subpackages

	Submodules

	f5.common.constants module

	f5.common.iapp_parser module

	f5.common.logger module

	Module contents

f5.sdk_exception

A base exception for all exceptions in this library.

Base Exception

	F5SDKError
	Import and subclass this exception in all exceptions in this library.

	
exception f5.sdk_exception.F5SDKError[source]

	Bases: exceptions.Exception

Import and subclass this exception in all exceptions in this library.

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

 	f5 package

f5.bigip

f5.bigip module

Classes and functions for configuring BIG-IP

Organizing Collection Modules

	cm
	BigIP cluster module

	ltm
	BigIP Local Traffic Monitor (LTM) module.

	net
	BigIP net module

	sys
	BigIP System (sys) module

Resource Base Classes

	resource.ResourceBase(container)
	Base class for all BigIP iControl REST API endpoints.

	resource.OrganizingCollection(bigip)
	Base class for objects that collect resources under them.

	resource.Collection(container)
	Base class for objects that collect a list of Resources

	resource.Resource(container)
	Base class to represent a Configurable Resource on the device.

Resource Exceptions

	resource.KindTypeMismatch
	Raise this when server JSON keys are incorrect for the Resource type.

	resource.DeviceProvidesIncompatibleKey
	Raise this when server JSON keys are incompatible with Python.

	resource.InvalidResource
	Raise this when a caller tries to invoke an unsupported CRUDL op.

	resource.MissingRequiredCreationParameter
	Various values MUST be provided to create different Resources.

	resource.MissingRequiredReadParameter
	Various values MUST be provided to refresh some Resources.

	resource.UnregisteredKind
	The returned server JSON kind key wasn’t expected by this Resource.

	resource.GenerationMismatch
	The server reported BigIP is not the expacted value.

	resource.InvalidForceType
	Must be of type bool.

	resource.URICreationCollision
	self._meta_data[‘uri’] can only be assigned once. In create or load.

	resource.UnsupportedOperation
	Object does not support the method that was called.

Mixins

	mixins.ToDictMixin
	Convert an object’s attributes to a dictionary

	mixins.LazyAttributesMixin
	

	mixins.ExclusiveAttributesMixin
	Overrides __setattr__ to remove exclusive attrs from the object.

	mixins.UnnamedResourceMixin
	This makes a resource object work if there is no name.

	mixins.LazyAttributesRequired
	Raised when a object accesses a lazy attribute that is not listed

	
class f5.bigip.BigIP(hostname, username, password, **kwargs)[source]

	Bases: f5.bigip.resource.OrganizingCollection

An interface to a single BIG-IP

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Call to obtain a list of the reference dicts in the instance items

	Returns:	List of self.items

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

resource module

This module provides classes that specify how RESTful resources are handled.

THE MOST IMPORTANT THING TO KNOW ABOUT THIS API IS THAT YOU CAN DIRECTLY INFER
REST URIs FROM PYTHON EXPRESSIONS, AND VICE VERSA.

Examples:

	Expression: bigip = BigIP(‘a’, ‘b’, ‘c’)

	URI Returned: https://a/mgmt/tm/

	Expression: bigip.ltm

	URI Returned: https://a/mgmt/tm/ltm/

	Expression: pools1 = bigip.ltm.pools

	URI Returned: https://a/mgmt/tm/ltm/pool

	Expression: pool_a = pools1.create(partition=”Common”, name=”foo”)

	URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

There are different types of resources published by the BigIP REST Server, they
are represented by the classes in this module.

We refer to a server-provided resource as a “service”. Thus far all URI
referenced resources are “services” in this sense.

We use methods named Create, Refresh, Update, Load, and Delete to manipulate
BigIP device services.

Methods:

	create – uses HTTP POST, creates a new resource and with its own URI on
the device

	refresh – uses HTTP GET, obtains the state of a device resource, and sets
the representing Python Resource Object tracks device state via its attrs

	
	update – uses HTTP PUT, submits a new configuration to the device resource

	and sets the Resource attrs to the state the device reports

	load – uses HTTP GET, obtains the state of an existing resource on the
device and sets the Resource attrs to that state

	delete – uses HTTP DELETE, removes the resource from the device, and sets
self.__dict__ to {‘deleted’: True}

	Available Classes:

	
	ResourceBase – only refresh is generally supported in all resource
types, this class provides refresh. ResourceBase objects are usually
instantiated via setting lazy attributes. ResourceBase provides a
constructor to match its call in LazyAttributeMixin.__getattr__. The
expected behavior is that all resource subclasses depend on this
constructor to correctly set their self._meta_data[‘uri’].
All ResourceBase objects (except BigIPs) have a container (BigIPs contain
themselves). The container is the object the ResourceBase is an
attribute of.

	OrganizingCollection – These resources support lists of “reference”
“links”. These are json blobs without a Python class representation.

Example URI_path: /mgmt/tm/ltm/

	
	Collection – These resources support lists of ResourceBase Objects.

	Example URI_path: /mgmt/tm/ltm/nat

	Resource – These resources are the only resources that support
create, update, and delete operations. Because they support HTTP
post (via _create) they uniquely depend on 2 uri’s, a uri that supports
the creating post, and the returned uri of the newly created resource.

Example URI_path: /mgmt/tm/ltm/nat/~Common~testnat1

	
exception f5.bigip.resource.KindTypeMismatch[source]

	Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incorrect for the Resource type.

	
exception f5.bigip.resource.DeviceProvidesIncompatibleKey[source]

	Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incompatible with Python.

	
exception f5.bigip.resource.InvalidResource[source]

	Bases: f5.sdk_exception.F5SDKError

Raise this when a caller tries to invoke an unsupported CRUDL op.

All resources support refresh and raw.
Only Resource‘s support load, create, update, and delete.

	
exception f5.bigip.resource.MissingRequiredCreationParameter[source]

	Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to create different Resources.

	
exception f5.bigip.resource.MissingRequiredReadParameter[source]

	Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to refresh some Resources.

	
exception f5.bigip.resource.UnregisteredKind[source]

	Bases: f5.sdk_exception.F5SDKError

The returned server JSON kind key wasn’t expected by this Resource.

	
exception f5.bigip.resource.GenerationMismatch[source]

	Bases: f5.sdk_exception.F5SDKError

The server reported BigIP is not the expacted value.

	
exception f5.bigip.resource.InvalidForceType[source]

	Bases: exceptions.ValueError

Must be of type bool.

	
exception f5.bigip.resource.URICreationCollision[source]

	Bases: f5.sdk_exception.F5SDKError

self._meta_data[‘uri’] can only be assigned once. In create or load.

	
exception f5.bigip.resource.UnsupportedOperation[source]

	Bases: f5.sdk_exception.F5SDKError

Object does not support the method that was called.

	
class f5.bigip.resource.ResourceBase(container)[source]

	Bases: f5.bigip.mixins.LazyAttributeMixin, f5.bigip.mixins.ToDictMixin

Base class for all BigIP iControl REST API endpoints.

The BigIP is represented by an object that converts device published uri’s
into Python objects. Each uri maps to a Python object. The mechanism for
instantiating these objects is the __getattr__ Special Function in the
LazyAttributeMixin. When a registered attribute is dot referenced, on
the device object (e.g. bigip.ltm or simply bigip), an appropriate
object is instantiated and attributed to the referencing object:

bigip.ltm = LTM(bigip)
bigip.ltm.nats
nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

This can be shortened to just the last line:

nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

Critically this enforces a convention relating device published uris to
API objects, in a hierarchy similar to the uri paths. I.E. the uri
corresponding to a Nats object is mgmt/tm/ltm/nat/. If you
query the bigip’s uri (e.g. print(bigip._meta_data[‘uri’])), you’ll see
that it ends in:
/mgmt/tm/, if you query the ltm object’s uri
(e.g. print(bigip.ltm._meta_data[‘uri’])) you’ll see it ends in
/mgmt/tm/ltm/.

In general the objects build a required self._meta_data[‘uri’] attribute
by:
1. Inheriting this class.
2. calling super(Subclass, self).__init__(container)
3. self.uri = self.container_uri[‘uri’] + ‘/’ + self.__class__.__name__

The net result is a succinct mapping between uri’s and objects,
that represents objects in a hierarchical relationship similar to the
devices uri path hierarchy.

	
refresh(**kwargs)[source]

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
create(**kwargs)[source]

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
update(**kwargs)[source]

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)[source]

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
class f5.bigip.resource.OrganizingCollection(bigip)[source]

	Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect resources under them.

OrganizingCollection objects fulfill the following functions:

	represent a uri path fragment immediately ‘below’ /mgmt/tm

	provide a list of dictionaries that contain uri’s to other
resources on the device.

	
get_collection(**kwargs)[source]

	Call to obtain a list of the reference dicts in the instance items

	Returns:	List of self.items

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.resource.Collection(container)[source]

	Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect a list of Resources

The Collection Resource is responsible for providing a list of Python
objects, where each object represents a unique URI, the URI contains the
URI of the Collection at the front of its path, and the ‘kind’ of the
URI-associated-JSON has been registered with the attribute registry of the
Collection subclass.

Note

Any subclass of this base class must have s at the end of its name
unless it ends in s then it must have _s.

	
get_collection(**kwargs)[source]

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.resource.Resource(container)[source]

	Bases: f5.bigip.resource.ResourceBase

Base class to represent a Configurable Resource on the device.

Warning

Objects instantiated from subclasses of Resource do NOT contain a URI
(self._meta_data[‘uri’]) at instantiation!

Resource objects provide the interface for the Creation of new services on
the device. Once a new service has been created, (via self.create or
self.load), the instance constructs its URI and stores it as
self._meta_data['uri'].

It is an error to attempt to call
create() or
load() on an instance more than once.
self._meta_data['uri'] MUST not be changed after creation or load.

Note

creation query args, and creation hash fragments are stored as
separate _meta_data values.

By “Configurable” we mean that submitting JSON via the PUT method to the
URI managed by subclasses of Resource, changes the state of the
corresponding service on the device.

It also means that the URI supports DELETE.

	
create(**kwargs)[source]

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
load(**kwargs)[source]

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
update(**kwargs)[source]

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
delete(**kwargs)[source]

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)[source]

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

mixins module

	
class f5.bigip.mixins.ToDictMixin[source]

	Bases: object

Convert an object’s attributes to a dictionary

	
exception f5.bigip.mixins.LazyAttributesRequired[source]

	Bases: f5.sdk_exception.F5SDKError

Raised when a object accesses a lazy attribute that is not listed

	
class f5.bigip.mixins.LazyAttributeMixin[source]

	Bases: object

Allow attributes to be created lazily based on the allowed values

	
class f5.bigip.mixins.ExclusiveAttributesMixin[source]

	Bases: object

Overrides __setattr__ to remove exclusive attrs from the object.

	
class f5.bigip.mixins.UnnamedResourceMixin[source]

	Bases: object

This makes a resource object work if there is no name.

These objects do not support create or delete and are often found
as Resources that are under an organizing collection. For example
the mgmt/tm/sys/global-settings is one of these and has a kind of
tm:sys:global-settings:global-settingsstate and the URI does not
match the kind.

	
create(**kwargs)[source]

	Create is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
delete(**kwargs)[source]

	Delete is not supported for unnamed resources

	Raises:	UnsupportedOperation

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

 	f5 package

 	f5.bigip

f5.bigip.cm

Module Contents

BigIP cluster module

	REST URI

	http://localhost/mgmt/tm/cm/

	GUI Path

	Device Management

	REST Kind

	tm:cm:*

Submodule List

	device
	BigIP cluster device submodule

	device_group
	BigIP cluster device-group submodule

	traffic_group
	BigIP cluster traffic-group submodule

	
class f5.bigip.cm.Cm(bigip)[source]

	Bases: f5.bigip.resource.OrganizingCollection

BigIP Cluster Organizing Collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Call to obtain a list of the reference dicts in the instance items

	Returns:	List of self.items

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

Submodules

device

BigIP cluster device submodule

	REST URI

	http://localhost/mgmt/tm/cm/device/

	GUI Path

	Device Management --> Devices

	REST Kind

	tm:cm:device:*

	
class f5.bigip.cm.device.Devices(cm)[source]

	Bases: f5.bigip.resource.Collection

BigIP cluster devices collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.cm.device.Device(device_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP cluster device object.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

device_group

BigIP cluster device-group submodule

	REST URI

	http://localhost/mgmt/tm/cm/device-group

	GUI Path

	Device Management --> Device Groups

	REST Kind

	tm:cm:device-group:*

	
class f5.bigip.cm.device_group.Device_Groups(cm)[source]

	Bases: f5.bigip.resource.Collection

BigIP cluster device-groups collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.cm.device_group.Device_Group(device_groups)[source]

	Bases: f5.bigip.resource.Resource

BigIP cluster device-group resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.cm.device_group.Devices_s(device_group)[source]

	Bases: f5.bigip.resource.Collection

BigIP cluster devices-group devices subcollection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.cm.device_group.Devices(devices_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP cluster devices-group devices subcollection resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

traffic_group

BigIP cluster traffic-group submodule

	REST URI

	http://localhost/mgmt/tm/cm/traffic-group

	GUI Path

	Device Management --> Traffic Groups

	REST Kind

	tm:cm:traffic-group:*

	
class f5.bigip.cm.traffic_group.Traffic_Groups(cm)[source]

	Bases: f5.bigip.resource.Collection

BigIP cluster traffic-group collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.cm.traffic_group.Traffic_Group(traffic_groups)[source]

	Bases: f5.bigip.resource.Resource

BigIP cluster traffic-group resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

 	f5 package

 	f5.bigip

f5.bigip.ltm

Module Contents

BigIP Local Traffic Monitor (LTM) module.

	REST URI

	http://localhost/mgmt/tm/ltm/

	GUI Path

	Local Traffic

	REST Kind

	
tm:ltm:*

	monitor
	BigIP LTM monitor submodule.

	nat
	BigIP Local Traffic Manager (LTM) Nat module.

	node
	BigIP Local Traffic Manager (LTM) node module.

	policy
	BigIP Local Traffic Manager (LTM) policy module.

	pool
	BigIP Local Traffic Manager (LTM) pool module.

	rule
	BigIP Local Traffic Manager (LTM) rule module.

	snat
	BigIP Local Traffic Manager (LTM) Snat module.

	ssl
	This module provides some more Pythonic support for SSL.

	virtual
	BigIP Local Traffic Manager (LTM) virtual module.

	
class f5.bigip.ltm.Ltm(bigip)[source]

	Bases: f5.bigip.resource.OrganizingCollection

BigIP Local Traffic Manager (LTM) organizing collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Call to obtain a list of the reference dicts in the instance items

	Returns:	List of self.items

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

Submodules

monitor

BigIP LTM monitor submodule.

	REST URI

	http://localhost/mgmt/tm/ltm/monitors/

	GUI Path

	Local Traffic --> Monitors

	REST Kind

	tm:ltm:monitors*

Monitor Collections and Resources

	Https(monitor)
	BigIP Http monitor collection.

	Http(https)
	BigIP Http monitor resource.

	Https_s(monitor)
	BigIP Https monitor collection.

	HttpS(https_s)
	BigIP Https monitor resource.

	Diameters(monitor)
	BigIP diameter monitor collection.

	Diameter(diameters)
	BigIP diameter monitor resource.

	Dns_s(monitor)
	BigIP Dns monitor collection.

	Dns(dns_s)
	BigIP Dns monitor resource.

	Externals(monitor)
	BigIP external monitor collection.

	External(externals)
	BigIP external monitor resrouce.

	Firepass_s(monitor)
	BigIP Fire Pass monitor collection.

	Firepass(firepass_s)
	BigIP external monitor resource.

	Ftps(monitor)
	BigIP Ftp monitor collection.

	Ftp(ftps)
	BigIP Ftp monitor resource.

	Gateway_Icmps(monitor)
	BigIP Gateway Icmp monitor collection.

	Gateway_Icmp(gateway_icmps)
	BigIP Gateway Icmp monitor resource.

	Icmps(monitor)
	BigIP Icmp monitor collection.

	Icmp(icmps)
	BigIP Icmp monitor resource.

	Imaps(monitor)
	BigIP Imap monitor collection.

	Imap(imaps)
	BigIP Imap monitor resource.

	Inbands(monitor)
	BigIP in band monitor collection.

	Inband(inbands)
	BigIP in band monitor resource.

	Ldaps(monitor)
	BigIP Ldap monitor collection.

	Ldap(ldaps)
	BigIP Ldap monitor resource.

	Module_Scores(monitor)
	BigIP module scores monitor collection.

	Module_Score(gateway_icmps)
	BigIP module scores monitor resource.

	Mssqls(monitor)
	BigIP Mssql monitor collection.

	Mssql(mssqls)
	BigIP Mssql monitor resource.

	Mysqls(monitor)
	BigIP MySQL monitor collection.

	Mysql(mysqls)
	BigIP MySQL monitor resource.

	Nntps(monitor)
	BigIP Nntps monitor collection.

	Nntp(nntps)
	BigIP Nntps monitor resource.

	Nones(monitor)
	BigIP None monitor collection.

	NONE(nones)
	BigIP None monitor resource.

	Oracles(monitor)
	BigIP Oracle monitor collection.

	Oracle(oracles)
	BigIP Oracle monitor resource.

	Pop3s(monitor)
	BigIP Pop3 monitor collection.

	Pop3(pop3s)
	BigIP Pop3 monitor resource.

	Postgresqls(monitor)
	BigIP PostGRES SQL monitor collection.

	Postgresql(postgresqls)
	BigIP PostGRES SQL monitor resource.

	Radius_s(monitor)
	BigIP radius monitor collection.

	Radius(radius_s)
	BigIP radius monitor resource.

	Radius_Accountings(monitor)
	BigIP radius accounting monitor collection.

	Radius_Accounting(radius_accountings)
	BigIP radius accounting monitor resource.

	Real_Servers(monitor)
	BigIP real-server monitor collection.

	Real_Server(real_servers)
	BigIP real-server monitor resource.

	Rpcs(monitor)
	BigIP Rpc monitor collection.

	Rpc(rpcs)
	BigIP Rpc monitor resource.

	Sasps(monitor)
	BigIP Sasp monitor collection.

	Sasp(sasps)
	BigIP Sasp monitor resource.

	Scripteds(monitor)
	BigIP scripted monitor collection.

	Scripted(scripteds)
	BigIP scripted monitor resource.

	Sips(monitor)
	BigIP Sip monitor collection.

	Sip(sips)
	BigIP Sip monitor resource.

	Smbs(monitor)
	BigIP Smb monitor collection.

	Smb(smbs)
	BigIP Smb monitor resource.

	Smtps(monitor)
	BigIP Smtp monitor collection.

	Smtp(smtps)
	BigIP Smtp monitor resource.

	Snmp_Dcas(monitor)
	BigIP SNMP DCA monitor collection.

	Snmp_Dca(snmp_dcas)
	BigIP SNMP DCA monitor resource.

	Snmp_Dca_Bases(monitor)
	BigIP SNMP DCA bases monitor collection.

	Snmp_Dca_Base(snmp_dca_bases)
	BigIP SNMP DCA monitor resource.

	Soaps(monitor)
	BigIP Soap monitor collection.

	Soap(soaps)
	BigIP Soap monitor resource.

	Tcps(monitor)
	BigIP Tcp monitor collection.

	Tcp(tcps)
	BigIP Tcp monitor resource.

	Tcp_Echos(monitor)
	BigIP Tcp echo monitor collection.

	Tcp_Echo(tcp_echos)
	BigIP Tcp echo monitor resource.

	Tcp_Half_Opens(monitor)
	BigIP Tcp half open monitor collection.

	Tcp_Half_Open(tcp_half_opens)
	BigIP Tcp half open monitor resource.

	Udps(monitor)
	BigIP Udp monitor collection.

	Udp(udps)
	BigIP Udp monitor resource.

	Virtual_Locations(monitor)
	BigIP virtual-locations monitor collection.

	Virtual_Location(virtual_locations)
	BigIP virtual-locations monitor resource.

	Waps(monitor)
	BigIP Wap monitor collection.

	Wap(waps)
	BigIP Wap monitor resource.

	Wmis(monitor)
	BigIP Wmi monitor collection.

	Wmi(wmis)
	BigIP Wmi monitor resource.

	
class f5.bigip.ltm.monitor.Https(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Http monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Http(https)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Http monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Https_s(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Https monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.HttpS(https_s)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Https monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Diameters(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP diameter monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Diameter(diameters)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP diameter monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Dns_s(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Dns monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Dns(dns_s)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Dns monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Externals(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP external monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.External(externals)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP external monitor resrouce.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Firepass_s(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Fire Pass monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Firepass(firepass_s)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP external monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Ftps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Ftp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Ftp(ftps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Ftp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Gateway_Icmps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Gateway Icmp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Gateway_Icmp(gateway_icmps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Gateway Icmp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Icmps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Icmp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Icmp(icmps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Icmp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Imaps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Imap monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Imap(imaps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Imap monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Inbands(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP in band monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Inband(inbands)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP in band monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Ldaps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Ldap monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Ldap(ldaps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Ldap monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Module_Scores(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP module scores monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Module_Score(gateway_icmps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP module scores monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Mysqls(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP MySQL monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Mysql(mysqls)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP MySQL monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Mssqls(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Mssql monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Mssql(mssqls)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Mssql monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Nntps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Nntps monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Nntp(nntps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Nntps monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Nones(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP None monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.NONE(nones)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP None monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Oracles(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Oracle monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Oracle(oracles)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Oracle monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Pop3s(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Pop3 monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Pop3(pop3s)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Pop3 monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Postgresqls(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP PostGRES SQL monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Postgresql(postgresqls)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP PostGRES SQL monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Radius_s(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP radius monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Radius(radius_s)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP radius monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Radius_Accountings(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP radius accounting monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Radius_Accounting(radius_accountings)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP radius accounting monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Real_Servers(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP real-server monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Real_Server(real_servers)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP real-server monitor resource.

	
update(**kwargs)[source]

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	tmCommand attribute removed prior to PUT

	agent attribute removed prior to PUT

	post attribute removed prior to PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
class f5.bigip.ltm.monitor.Rpcs(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Rpc monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Rpc(rpcs)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Rpc monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Sasps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Sasp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Sasp(sasps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Sasp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Scripteds(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP scripted monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Scripted(scripteds)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP scripted monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Sips(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Sip monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Sip(sips)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Sip monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Smbs(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Smb monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Smb(smbs)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Smb monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Smtps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Smtp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Smtp(smtps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Smtp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Snmp_Dcas(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP SNMP DCA monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Snmp_Dca(snmp_dcas)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP SNMP DCA monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Snmp_Dca_Bases(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP SNMP DCA bases monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Snmp_Dca_Base(snmp_dca_bases)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP SNMP DCA monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Soaps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Soap monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Soap(soaps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Soap monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Tcps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Tcp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Tcp(tcps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Tcp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Tcp_Echos(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Tcp echo monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Tcp_Echo(tcp_echos)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Tcp echo monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Tcp_Half_Opens(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Tcp half open monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Tcp_Half_Open(tcp_half_opens)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Tcp half open monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Udps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Udp monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Udp(udps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Udp monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Virtual_Locations(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP virtual-locations monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Virtual_Location(virtual_locations)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP virtual-locations monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Waps(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Wap monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Wap(waps)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Wap monitor resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	defaultsFrom attribute is removed from JSON before the PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
class f5.bigip.ltm.monitor.Wmis(monitor)[source]

	Bases: f5.bigip.resource.Collection

BigIP Wmi monitor collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.monitor.Wmi(wmis)[source]

	Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Wmi monitor resource.

	
update(**kwargs)[source]

	Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	agent attribute removed prior to PUT

	post attribute removed prior to PUT

	method attribute removed prior to PUT

	Parameters:	kwargs – keys and associated values to alter on the device

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

nat

BigIP Local Traffic Manager (LTM) Nat module.

	REST URI

	http://localhost/mgmt/tm/ltm/nat

	GUI Path

	Local Traffic --> Nat

	REST Kind

	tm:ltm:nat:*

node Collections and Resources

	Nats(ltm)
	BigIP LTM Nat collection object

	Nat(nat_s)
	BigIP LTM Nat collection resource

	
class f5.bigip.ltm.nat.Nats(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM Nat collection object

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.nat.Nat(nat_s)[source]

	Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP LTM Nat collection resource

	
create(**kwargs)[source]

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

Note

If you are creating with ``inheritedTrafficGroup` set to
False you just also have a trafficGroup.

	Parameters:	kwargs – All the key-values needed to create the resource

	Returns:	self - A python object that represents the object’s
configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

node

BigIP Local Traffic Manager (LTM) node module.

	REST URI

	http://localhost/mgmt/tm/ltm/node

	GUI Path

	Local Traffic --> Nodes

	REST Kind

	tm:ltm:node:*

node Collections and Resources

	Nodes(ltm)
	BigIP LTM node collection

	Node(nodes)
	BigIP LTM node resource

	
class f5.bigip.ltm.node.Nodes(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM node collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.node.Node(nodes)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM node resource

	
update(**kwargs)[source]

	Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	If fqdn is in the kwargs or set as an attribute, removes the
autopopulate and addressFamily keys from it if there.

	Parameters:	kwargs – keys and associated values to alter on the device

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

policy

BigIP Local Traffic Manager (LTM) policy module.

	REST URI

	http://localhost/mgmt/tm/ltm/policy

	GUI Path

	Local Traffic --> policy

	REST Kind

	tm:ltm:policy:*

Policy Collections and Resources

	Policys(ltm)
	BigIP LTM policy collection.

	Policy(policy_s)
	BigIP LTM policy resource.

	Rules_s(policy)
	BigIP LTM policy rules sub-collection.

	Rules(rules_s)
	BigIP LTM policy rules sub-collection resource.

	Actions_s(rules)
	BigIP LTM policy actions sub-collection.

	Actions(actions_s)
	BigIP LTM policy actions sub-collection resource.

	Conditions_s(rules)
	BigIP LTM policy conditions sub-collection.

	Conditions(conditions_s)
	BigIP LTM policy conditions sub-collection resource.

	
class f5.bigip.ltm.policy.Policys(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM policy collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.policy.Policy(policy_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM policy resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.ltm.policy.Rules_s(policy)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM policy rules sub-collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.policy.Rules(rules_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM policy rules sub-collection resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.ltm.policy.Actions_s(rules)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM policy actions sub-collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.policy.Actions(actions_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM policy actions sub-collection resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.ltm.policy.Conditions_s(rules)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM policy conditions sub-collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.policy.Conditions(conditions_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM policy conditions sub-collection resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

pool

BigIP Local Traffic Manager (LTM) pool module.

	REST URI

	http://localhost/mgmt/tm/ltm/pool

	GUI Path

	Local Traffic --> Pools

	REST Kind

	tm:ltm:pools:*

Pool Collections and Resources

	Pools(ltm)
	BigIP LTM pool collection

	Pool(pool_s)
	BigIP LTM pool resource

	Members_s(pool)
	BigIP LTM pool members sub-collection

	Member
	

	
class f5.bigip.ltm.pool.Pools(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM pool collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.pool.Pool(pool_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM pool resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.ltm.pool.Members_s(pool)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM pool members sub-collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.pool.Members(members_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM pool members sub-collection resource

	
update(**kwargs)[source]

	Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device. Various edge cases are handled:

	read-only attributes that are unchangeable are removed

	If fqdn is in the kwargs or set as an attribute, removes the
autopopulate and addressFamily keys from it if there.

	Parameters:	
	state= – state value or None required.

	kwargs – keys and associated values to alter on the device

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

rule

BigIP Local Traffic Manager (LTM) rule module.

	REST URI

	http://localhost/mgmt/tm/ltm/rule

	GUI Path

	Local Traffic --> Rules

	REST Kind

	tm:ltm:rule:*

Rule Collections and Resources

	Rules(ltm)
	BigIP LTM rule collection

	Rule(rule_s)
	BigIP LTM rule resource

	
class f5.bigip.ltm.rule.Rules(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM rule collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.rule.Rule(rule_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM rule resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

snat

BigIP Local Traffic Manager (LTM) Snat module.

	REST URI

	http://localhost/mgmt/tm/ltm/snat

	GUI Path

	Local Traffic --> Snat

	REST Kind

	tm:ltm:snat:*

Snat Collections and Resources

	Snats(ltm)
	BigIP LTM Snat collection

	Snat(snat_s)
	BigIP LTM Snat resource

	
class f5.bigip.ltm.snat.Snats(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM Snat collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.snat.Snat(snat_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM Snat resource

	
create(**kwargs)[source]

	Call this to create a new snat on the BigIP.

Uses HTTP POST to ‘containing’ URI to create a service associated with
a new URI on the device.

Note this is the one of two fundamental Resource operations that
returns a different uri (in the returned object) than the uri the
operation was called on. The returned uri can be accessed as
Object.selfLink, the actual uri used by REST operations on the object
is Object._meta_data[‘uri’]. The _meta_data[‘uri’] is the same as
Object.selfLink with the substring ‘localhost’ replaced with the value
of Object._meta_data[‘bigip’]._meta_data[‘hostname’], and without
query args, or hash fragments.

The following is done prior to the POST
* Ensures that one of automap, snatpool, translastion

parameter is passed in.

	Parameters:	kwargs – All the key-values needed to create the resource

	Returns:	An instance of the Python object that represents the device’s

uri-published resource. The uri of the resource is part of the
object’s _meta_data.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

ssl

virtual

BigIP Local Traffic Manager (LTM) virtual module.

	REST URI

	http://localhost/mgmt/tm/ltm/virtual

	GUI Path

	Local Traffic --> Virtual Servers

	REST Kind

	tm:ltm:virtual:*

Snat Collections and Resources

	Virtuals(ltm)
	BigIP LTM virtual collection

	Virtual(virtual_s)
	BigIP LTM virtual resource

	
class f5.bigip.ltm.virtual.Virtuals(ltm)[source]

	Bases: f5.bigip.resource.Collection

BigIP LTM virtual collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.ltm.virtual.Virtual(virtual_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP LTM virtual resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

 	f5 package

 	f5.bigip

f5.bigip.net

Module Conents

BigIP net module

	REST URI

	http://localhost/mgmt/tm/net/

	GUI Path

	Network

	REST Kind

	tm:net:*

Submodule List

	arp
	BigIP Network ARP module.

	fdb
	Directory: net module: fdb.

	interface
	BigIP Network interface module.

	route
	BigIP Network route module.

	route_domain
	Directory: net module: route-domain.

	selfip
	BigIP Network self-ip module.

	tunnels
	BigIP Network tunnels module.

	vlan
	BigIP Network vlan module.

Submodules

arp

BigIP Network ARP module.

	REST URI

	http://localhost/mgmt/tm/net/arp

	GUI Path

	Network --> ARP

	REST Kind

	tm:net:arp:*

ARP Collections and Resources

	Arps(net)
	BigIP network ARP collection

	Arp(arp_s)
	BigIP network ARP resource

	
class f5.bigip.net.arp.Arps(net)[source]

	Bases: f5.bigip.resource.Collection

BigIP network ARP collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.arp.Arp(arp_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP network ARP resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

interface

BigIP Network interface module.

	REST URI

	http://localhost/mgmt/tm/net/interface

	GUI Path

	Network --> Interfaces

	REST Kind

	tm:net:interface:*

Interface Collections and Resources

	Interfaces(net)
	BigIP network interface collection

	Interface(interface_s)
	BigIP network interface collection

	
class f5.bigip.net.interface.Interfaces(net)[source]

	Bases: f5.bigip.resource.Collection

BigIP network interface collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.interface.Interface(interface_s)[source]

	Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP network interface collection

	
create(**kwargs)[source]

	Create is not supported for interfaces.

	Raises:	UnsupportedOperation

	
delete()[source]

	Delete is not supported for interfaces.

	Raises:	UnsupportedOperation

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

route

BigIP Network route module.

	REST URI

	http://localhost/mgmt/tm/net/route

	GUI Path

	Network --> Routes

	REST Kind

	tm:net:route:*

Route Collections and Resources

	Routes(net)
	BigIP network route collection

	Route(route_s)
	BigIP network route resource

	
class f5.bigip.net.route.Routes(net)[source]

	Bases: f5.bigip.resource.Collection

BigIP network route collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.route.Route(route_s)[source]

	Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP network route resource

	
create(**kwargs)[source]

	Create a Route on the BigIP and the associated python object.

One of the following gateways is required when creating the route
objects: blackhole, gw, tmInterface, pool.

	Params kwargs:	keyword arguments passed in from create call

	Raises:	KindTypeMismatch

	Raises:	MissingRequiredCreationParameter

	Raises:	HTTPError

	Returns:	Python Route object

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

route_domain

Directory: net module: route-domain.

	REST URI

	https://localhost/mgmt/tm/net/route-domain?ver=11.6.0

	GUI Path

	XXX

	REST Kind

	tm:net:route-domain:*

Route Collections and Resources

	Route_Domains(net)
	A Collection concrete subclass docstring.

	Route_Domain(Route_Domains)
	A Resource concrete subclass.

	
class f5.bigip.net.route_domain.Route_Domains(net)[source]

	Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.route_domain.Route_Domain(Route_Domains)[source]

	Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

selfip

BigIP Network self-ip module.

Note

Self IPs path does not match their kind or URI because the string self
causes problems in Python because it is a reserved word.

	REST URI

	http://localhost/mgmt/tm/net/self

	GUI Path

	Network --> Self IPs

	REST Kind

	tm:net:self:*

Selfip Collections and Resources

	Selfips(net)
	BigIP network Self-IP collection

	Selfip(selfip_s)
	BigIP Self-IP resource

	
class f5.bigip.net.selfip.Selfips(net)[source]

	Bases: f5.bigip.resource.Collection

BigIP network Self-IP collection

Note

The objects in the collection are actually called ‘self’ in
iControlREST, but obviously this will cause problems in Python so we
changed its name to Selfip.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.selfip.Selfip(selfip_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP Self-IP resource

Use this object to create, refresh, update, delete, and load self ip
configuration on the BIGIP. This requires that a
VLAN object be present on the system and
that object’s :attrib:`fullPath` be used as the VLAN name.

The address that is used for create is a <ipaddress>/<netmask>. For
example 192.168.1.1/32.

Note

The object is actually called self in iControlREST, but obviously
this will cause problems in Python so we changed its name to
Selfip.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

tunnels

BigIP Network tunnels module.

	REST URI

	http://localhost/mgmt/tm/net/tunnels

	GUI Path

	Network --> tunnels

	REST Kind

	tm:net:tunnels:*

Tunnels Collections and Resources

	Tunnels_s(net)
	BigIP network tunnels collection

	Tunnels(tunnels_s)
	BigIP network tunnels resource (collection for GRE, Tunnel, VXLANs

	Tunnel(tunnels)
	BigIP tunnels tunnel resource

	Gres(tunnels_s)
	BigIP tunnels GRE sub-collection

	Gre(gres)
	BigIP tunnels GRE sub-collection resource

	Vxlans(tunnels_s)
	BigIP tunnels VXLAN sub-collection

	Vxlan(vxlans)
	BigIP tunnels VXLAN sub-collection resource

	
class f5.bigip.net.tunnels.Tunnels_s(net)[source]

	Bases: f5.bigip.resource.Collection

BigIP network tunnels collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.tunnels.Tunnels(tunnels_s)[source]

	Bases: f5.bigip.resource.Collection

BigIP network tunnels resource (collection for GRE, Tunnel, VXLANs

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.tunnels.Tunnel(tunnels)[source]

	Bases: f5.bigip.resource.Resource

BigIP tunnels tunnel resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.net.tunnels.Gres(tunnels_s)[source]

	Bases: f5.bigip.resource.Collection

BigIP tunnels GRE sub-collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.tunnels.Gre(gres)[source]

	Bases: f5.bigip.resource.Resource

BigIP tunnels GRE sub-collection resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.net.tunnels.Vxlans(tunnels_s)[source]

	Bases: f5.bigip.resource.Collection

BigIP tunnels VXLAN sub-collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.tunnels.Vxlan(vxlans)[source]

	Bases: f5.bigip.resource.Resource

BigIP tunnels VXLAN sub-collection resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

vlan

BigIP Network vlan module.

	REST URI

	http://localhost/mgmt/tm/net/vlan

	GUI Path

	Network --> Vlans

	REST Kind

	tm:net:vlan:*

Vlan Collections and Resources

	Vlans(net)
	BigIP network Vlan collection.

	Vlan(vlan_s)
	BigIP network Vlan resource.

	Interfaces_s(vlan)
	BigIP network Vlan interface collection.

	Interfaces(interfaces_s)
	BigIP network Vlan interface resource.

	
class f5.bigip.net.vlan.Vlans(net)[source]

	Bases: f5.bigip.resource.Collection

BigIP network Vlan collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.vlan.Vlan(vlan_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP network Vlan resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.net.vlan.Interfaces_s(vlan)[source]

	Bases: f5.bigip.resource.Collection

BigIP network Vlan interface collection.

Note

Not to be confused with tm/mgmt/net/interface. This is object
is actually called interfaces with an s by the BIGIP’s REST
API.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.vlan.Interfaces(interfaces_s)[source]

	Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP network Vlan interface resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

fdb

Directory: net module: fdb.

	REST URI

	https://localhost/mgmt/tm/net/fdb?ver=11.6.0

	GUI Path

	XXX

	REST Kind

	tm:net:fdb:*

FDB Collections and Resources

	Fdbs(net)
	A Collection concrete subclass docstring.

	Tunnel(Tunnels)
	A Resource concrete subclass.

	Tunnels(fdb)
	A Collection concrete subclass docstring.

	Vlans(fdb)
	A Collection concrete subclass docstring.

	
class f5.bigip.net.fdb.Fdbs(net)[source]

	Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.fdb.Tunnel(Tunnels)[source]

	Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.net.fdb.Tunnels(fdb)[source]

	Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.net.fdb.Vlans(fdb)[source]

	Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

 	f5 package

 	f5.bigip

f5.bigip.sys

Module Contents

BigIP System (sys) module

	REST URI

	http://localhost/mgmt/tm/sys/

	GUI Path

	System

	REST Kind

	tm:sys:*

Submodule List

	application
	BigIP iApp (application) module

	db
	BigIP db module

	failover
	BigIP system failover module

	folder
	BigIP system folder (partition) module

	global_settings
	BigIP system global-settings module

	ntp
	BigIP system ntp module

	performance
	BigIP system peformance stats module.

Submodules

application

BigIP iApp (application) module

	REST URI

	http://localhost/mgmt/sys/application/

	GUI Path

	iApps

	REST Kind

	tm:sys:application:*

Application Collections and Resources

	Applications(sys)
	BigIP iApp collection.

	Aplscripts(application)
	BigIP iApp script collection.

	Aplscript(apl_script_s)
	BigIP iApp script resource.

	Customstats(application)
	BigIP iApp custom stats sub-collection.

	Customstat(custom_stat_s)
	BigIP iApp custom stats sub-collection resource.

	Services(application)
	BigIP iApp service sub-collection.

	Service(service_s)
	BigIP iApp service sub-collection resource

	Templates(application)
	BigIP iApp template sub-collection

	Template(template_s)
	BigIP iApp template sub-collection resource

	
class f5.bigip.sys.application.Applications(sys)[source]

	Bases: f5.bigip.resource.Collection

BigIP iApp collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.application.Aplscripts(application)[source]

	Bases: f5.bigip.resource.Collection

BigIP iApp script collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.application.Aplscript(apl_script_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP iApp script resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.sys.application.Customstats(application)[source]

	Bases: f5.bigip.resource.Collection

BigIP iApp custom stats sub-collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.application.Customstat(custom_stat_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP iApp custom stats sub-collection resource.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.sys.application.Services(application)[source]

	Bases: f5.bigip.resource.Collection

BigIP iApp service sub-collection.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.application.Service(service_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP iApp service sub-collection resource

	
update(**kwargs)[source]

	Push local updates to the object on the device.

	Params kwargs:	keyword arguments for accessing/modifying the object

	Returns:	updated Python object

	
exists(**kwargs)[source]

	Check for the existence of the named object on the BigIP

Override of resource.Resource exists() to build proper URI unique to
service resources.

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
class f5.bigip.sys.application.Templates(application)[source]

	Bases: f5.bigip.resource.Collection

BigIP iApp template sub-collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.application.Template(template_s)[source]

	Bases: f5.bigip.resource.Resource

BigIP iApp template sub-collection resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

db

BigIP db module

	REST URI

	http://localhost/mgmt/sys/db/

	GUI Path

	N/A

	REST Kind

	tm:sys:db:*

DB Collections and Resources

	Dbs(sys)
	BigIP db collection

	Db(dbs)
	BigIP db resource

	
class f5.bigip.sys.db.Dbs(sys)[source]

	Bases: f5.bigip.resource.Collection

BigIP db collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.db.Db(dbs)[source]

	Bases: f5.bigip.resource.Resource

BigIP db resource

Note

db objects are read-only.

	
create(**kwargs)[source]

	Create is not supported for db resources.

	Raises:	UnsupportedOperation

	
delete(**kwargs)[source]

	Delete is not supported for db resources.

	Raises:	UnsupportedOperation

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

failover

BigIP system failover module

	REST URI

	http://localhost/mgmt/tm/sys/failover

	GUI Path

	System --> Failover

	REST Kind

	tm:sys:failover:*

Failover Resources

	Failover(sys)
	BigIP Failover stats and state change.

	
class f5.bigip.sys.failover.Failover(sys)[source]

	Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP Failover stats and state change.

	The failover object only supports load, update, and refresh because it is

	an unnamed resource.

To force the unit to standby call the update() method as follows:

Note

This is an unnamed resource so it has not ~Partition~Name pattern
at the end of its URI.

	
update(**kwargs)[source]

	Update is not supported for Failover

	Raises:	UnsupportedOperation

	
toggle_standby(**kwargs)[source]

	Toggle the standby status of a traffic group.

WARNING: This method which used POST obtains json keys from the device
that are not available in the response to a GET against the same URI.

Unique to refresh/GET:
u”apiRawValues”
u”selfLink”
Unique to toggle_standby/POST:
u”command”
u”standby”
u”traffic-group”

	
create(**kwargs)

	Create is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
delete(**kwargs)

	Delete is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

folder

BigIP system folder (partition) module

	REST URI

	http://localhost/mgmt/tm/sys/folder

	GUI Path

	System --> Users --> Partition List

	REST Kind

	tm:sys:folder:*

Folder Collections and Resources

	Folders(sys)
	BigIP system folder collection.

	Folder(folder_s)
	

	
class f5.bigip.sys.folder.Folders(sys)[source]

	Bases: f5.bigip.resource.Collection

BigIP system folder collection.

These are what we refer to as partition in the SDK.

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

global_settings

BigIP system global-settings module

	REST URI

	http://localhost/mgmt/tm/sys/global-settings

	GUI Path

	System --> Configuration --> Device

	REST Kind

	tm:sys:global-settings:*

Global_Settings Resources

	Global_Settings(sys)
	BigIP system global-settings resource

	
class f5.bigip.sys.global_settings.Global_Settings(sys)[source]

	Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP system global-settings resource

The global_settings object only supports load and update because it is an
unnamed resource.

Note

This is an unnamed resource so it has not ~Partition~Name pattern
at the end of its URI.

	
create(**kwargs)

	Create is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
delete(**kwargs)

	Delete is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

ntp

BigIP system ntp module

	REST URI

	http://localhost/mgmt/tm/sys/ntp

	GUI Path

	System --> Configuration --> Device --> NTP

	REST Kind

	tm:sys:ntp:*

NTP Resources and Subcollections

	Ntp(sys)
	BigIP system NTP unnamed resource

	Restricts(ntp)
	BigIP system NTP restrict sub-collection

	Restrict(restricts)
	BigIP system NTP restrict sub-collection resource

	
class f5.bigip.sys.ntp.Ntp(sys)[source]

	Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP system NTP unnamed resource

This is an unnamed resource so it has not ~Partition~Name pattern
at the end of its URI.

	
create(**kwargs)

	Create is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
delete(**kwargs)

	Delete is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
class f5.bigip.sys.ntp.Restricts(ntp)[source]

	Bases: f5.bigip.resource.Collection

BigIP system NTP restrict sub-collection

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
get_collection(**kwargs)

	Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource`s that map to the most
recently `refreshed state of uris-resources published by the device.
In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field
returned by the REST server.

Note

This method implies a single REST transaction with the
Collection subclass URI.

	Raises:	UnregisteredKind

	Returns:	list of reference dicts and Python Resource objects

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.ntp.Restrict(restricts)[source]

	Bases: f5.bigip.resource.Resource

BigIP system NTP restrict sub-collection resource

	
create(**kwargs)

	Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated
with a new unique URI on the device.

	Parameters:	kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.post method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: self - A python object that represents the object’s

configuration and state on the BigIP.

	
delete(**kwargs)

	Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received
instance.__dict__ is replace with {'deleted': True}

	Parameters:	kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.delete method where it
will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
load(**kwargs)

	Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

	Parameters:	kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: a Resource Instance (with a populated _meta_data[‘uri’])

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That
dictionary will be updated with kwargs. It is then submitted as JSON
to the device.

Various edge cases are handled:
* read-only attributes that are unchangeable are removed

	Parameters:	kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.put method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

performance

BigIP system peformance stats module.

	REST URI

	http://localhost/mgmt/tm/sys/performance

	GUI Path

	System --> Users --> Partition List

	REST Kind

	tm:sys:performance:*

Performace Resources and Subcollections

	Performance(sys)
	BigIP system performace stats collection

	All_Stats(performance)
	BigIP system performace stats unnamed resource

	
class f5.bigip.sys.performance.Performance(sys)[source]

	Bases: f5.bigip.resource.Collection

BigIP system performace stats collection

	
get_collection()[source]

	Performance collections are not proper BigIP collection objects.

	Raises:	UnsupportedOperation

	
create(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
delete(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

	
update(**kwargs)

	Implement this by overriding it in a subclass of Resource

	Raises:	InvalidResource

	
class f5.bigip.sys.performance.All_Stats(performance)[source]

	Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP system performace stats unnamed resource

	
update(**kwargs)[source]

	Update is not supported for statistics.

	Raises:	UnsupportedOperation

	
create(**kwargs)

	Create is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
delete(**kwargs)

	Delete is not supported for unnamed resources

	Raises:	UnsupportedOperation

	
exists(**kwargs)

	Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with
a :exc:~requests.HTTPError` exception it checks the exception for
status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

	Parameters:	kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will
be passed to the underlying requests.session.get method where it will
be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
:returns: bool – The objects exists on BigIP or not.
:raises: requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError], Any HTTP error that was not status

code 404.

	
raw

	Display the attributes that the current object has and their values.

	Returns:	A dictionary of attributes and their values

	
refresh(**kwargs)

	Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service.
This method is run for its side-effects on self.
If successful the instance attribute __dict__ is replaced
with the dict representing the device state. To figure out what that
state is, run a subsequest query of the object like this:
As with all CURDLE methods use a “requests_params” dict to pass
parameters to requests.session.HTTPMETHOD. See test_requests_params.py
for an example.
>>> resource_obj.refresh()
>>> print(resource_obj.raw)

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	F5 Python SDK 0.1.1a3 documentation

 	f5

 	f5 package

f5.common

Subpackages

Submodules

f5.common.constants module

f5.common.iapp_parser module

	
class f5.common.iapp_parser.IappParser(template_str)[source]

	Bases: object

	
template_sections = [u'presentation', u'implementation', u'html-help', u'role-acl']

	

	
tcl_list_for_attr_re = '{(\\s*\\w+\\s*)+}'

	

	
tcl_list_for_section_re = '(\\s*\\w+\\s*)+'

	

	
section_map = {u'html-help': u'htmlHelp', u'role-acl': u'roleAcl'}

	

	
attr_map = {u'requires-modules': u'requiresModules'}

	

	
sections_not_required = [u'html-help', u'role-acl']

	

	
tcl_list_patterns = {u'requires-modules': '{(\\s*\\w+\\s*)+}', u'role-acl': '(\\s*\\w+\\s*)+'}

	

	
template_attrs = [u'description', u'partition', u'requires-modules']

	

	
parse_template()[source]

	Parse the template string into a dict.

Find the (large) inner sections first, save them, and remove them from
a modified string. Then find the template attributes in the modified
string.

	Returns:	dictionary of parsed template

	
exception f5.common.iapp_parser.EmptyTemplateException[source]

	Bases: f5.sdk_exception.F5SDKError

	
args

	

	
message

	

	
exception f5.common.iapp_parser.CurlyBraceMismatchException[source]

	Bases: f5.sdk_exception.F5SDKError

	
args

	

	
message

	

	
exception f5.common.iapp_parser.NonextantSectionException[source]

	Bases: f5.sdk_exception.F5SDKError

	
args

	

	
message

	

	
exception f5.common.iapp_parser.NonextantTemplateNameException[source]

	Bases: f5.sdk_exception.F5SDKError

	
args

	

	
message

	

	
exception f5.common.iapp_parser.MalformedTCLListException[source]

	Bases: f5.sdk_exception.F5SDKError

	
args

	

	
message

	

f5.common.logger module

	
class f5.common.logger.Log[source]

	Bases: object

	
static debug(prefix, msg)[source]

	

	
static error(prefix, msg)[source]

	

	
static crit(prefix, msg)[source]

	

	
static info(prefix, msg)[source]

	

Module contents

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	F5 Python SDK 0.1.1a3 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 f5	

 	
 	
 f5.bigip	

 	
 	
 f5.bigip.cm	

 	
 	
 f5.bigip.cm.device	

 	
 	
 f5.bigip.cm.device_group	

 	
 	
 f5.bigip.cm.traffic_group	

 	
 	
 f5.bigip.ltm	

 	
 	
 f5.bigip.ltm.monitor	

 	
 	
 f5.bigip.ltm.nat	

 	
 	
 f5.bigip.ltm.node	

 	
 	
 f5.bigip.ltm.policy	

 	
 	
 f5.bigip.ltm.pool	

 	
 	
 f5.bigip.ltm.rule	

 	
 	
 f5.bigip.ltm.snat	

 	
 	
 f5.bigip.ltm.virtual	

 	
 	
 f5.bigip.mixins	

 	
 	
 f5.bigip.net	

 	
 	
 f5.bigip.net.arp	

 	
 	
 f5.bigip.net.fdb	

 	
 	
 f5.bigip.net.interface	

 	
 	
 f5.bigip.net.route	

 	
 	
 f5.bigip.net.route_domain	

 	
 	
 f5.bigip.net.selfip	

 	
 	
 f5.bigip.net.tunnels	

 	
 	
 f5.bigip.net.vlan	

 	
 	
 f5.bigip.pycontrol	

 	
 	
 f5.bigip.pycontrol.pycontrol	

 	
 	
 f5.bigip.resource	

 	
 	
 f5.bigip.sys	

 	
 	
 f5.bigip.sys.application	

 	
 	
 f5.bigip.sys.db	

 	
 	
 f5.bigip.sys.failover	

 	
 	
 f5.bigip.sys.folder	

 	
 	
 f5.bigip.sys.global_settings	

 	
 	
 f5.bigip.sys.ntp	

 	
 	
 f5.bigip.sys.performance	

 	
 	
 f5.common	

 	
 	
 f5.common.constants	

 	
 	
 f5.common.iapp_parser	

 	
 	
 f5.common.logger	

 	
 	
 f5.sdk_exception	

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	F5 Python SDK 0.1.1a3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	Actions (class in f5.bigip.ltm.policy)

 	Actions_s (class in f5.bigip.ltm.policy)

 	add_interface() (f5.bigip.pycontrol.pycontrol.BIGIP method)

 	add_interfaces() (f5.bigip.pycontrol.pycontrol.BIGIP method)

 	add_prefix() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	addcookies() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	addcredentials() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	All_Stats (class in f5.bigip.sys.performance)

 	

 	Aplscript (class in f5.bigip.sys.application)

 	Aplscripts (class in f5.bigip.sys.application)

 	Applications (class in f5.bigip.sys.application)

 	args (f5.bigip.pycontrol.F5Error attribute)

 	

 	(f5.common.iapp_parser.CurlyBraceMismatchException attribute)

 	(f5.common.iapp_parser.EmptyTemplateException attribute)

 	(f5.common.iapp_parser.MalformedTCLListException attribute)

 	(f5.common.iapp_parser.NonextantSectionException attribute)

 	(f5.common.iapp_parser.NonextantTemplateNameException attribute)

 	Arp (class in f5.bigip.net.arp)

 	Arps (class in f5.bigip.net.arp)

 	attr_map (f5.common.iapp_parser.IappParser attribute)

B

 	

 	BigIP (class in f5.bigip)

 	

 	BIGIP (class in f5.bigip.pycontrol.pycontrol)

C

 	

 	clear() (f5.bigip.pycontrol.pycontrol.InMemoryCache method)

 	clone() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	Cm (class in f5.bigip.cm)

 	Collection (class in f5.bigip.resource)

 	Conditions (class in f5.bigip.ltm.policy)

 	Conditions_s (class in f5.bigip.ltm.policy)

 	

 	create() (f5.bigip.BigIP method)

 	

 	(f5.bigip.cm.Cm method)

 	(f5.bigip.cm.device.Device method)

 	(f5.bigip.cm.device.Devices method)

 	(f5.bigip.cm.device_group.Device_Group method)

 	(f5.bigip.cm.device_group.Device_Groups method)

 	(f5.bigip.cm.device_group.Devices method)

 	(f5.bigip.cm.device_group.Devices_s method)

 	(f5.bigip.cm.traffic_group.Traffic_Group method)

 	(f5.bigip.cm.traffic_group.Traffic_Groups method)

 	(f5.bigip.ltm.Ltm method)

 	(f5.bigip.ltm.monitor.Diameter method)

 	(f5.bigip.ltm.monitor.Diameters method)

 	(f5.bigip.ltm.monitor.Dns method)

 	(f5.bigip.ltm.monitor.Dns_s method)

 	(f5.bigip.ltm.monitor.External method)

 	(f5.bigip.ltm.monitor.Externals method)

 	(f5.bigip.ltm.monitor.Firepass method)

 	(f5.bigip.ltm.monitor.Firepass_s method)

 	(f5.bigip.ltm.monitor.Ftp method)

 	(f5.bigip.ltm.monitor.Ftps method)

 	(f5.bigip.ltm.monitor.Gateway_Icmp method)

 	(f5.bigip.ltm.monitor.Gateway_Icmps method)

 	(f5.bigip.ltm.monitor.Http method)

 	(f5.bigip.ltm.monitor.HttpS method)

 	(f5.bigip.ltm.monitor.Https method)

 	(f5.bigip.ltm.monitor.Https_s method)

 	(f5.bigip.ltm.monitor.Icmp method)

 	(f5.bigip.ltm.monitor.Icmps method)

 	(f5.bigip.ltm.monitor.Imap method)

 	(f5.bigip.ltm.monitor.Imaps method)

 	(f5.bigip.ltm.monitor.Inband method)

 	(f5.bigip.ltm.monitor.Inbands method)

 	(f5.bigip.ltm.monitor.Ldap method)

 	(f5.bigip.ltm.monitor.Ldaps method)

 	(f5.bigip.ltm.monitor.Module_Score method)

 	(f5.bigip.ltm.monitor.Module_Scores method)

 	(f5.bigip.ltm.monitor.Mssql method)

 	(f5.bigip.ltm.monitor.Mssqls method)

 	(f5.bigip.ltm.monitor.Mysql method)

 	(f5.bigip.ltm.monitor.Mysqls method)

 	(f5.bigip.ltm.monitor.NONE method)

 	(f5.bigip.ltm.monitor.Nntp method)

 	(f5.bigip.ltm.monitor.Nntps method)

 	(f5.bigip.ltm.monitor.Nones method)

 	(f5.bigip.ltm.monitor.Oracle method)

 	(f5.bigip.ltm.monitor.Oracles method)

 	(f5.bigip.ltm.monitor.Pop3 method)

 	(f5.bigip.ltm.monitor.Pop3s method)

 	(f5.bigip.ltm.monitor.Postgresql method)

 	(f5.bigip.ltm.monitor.Postgresqls method)

 	(f5.bigip.ltm.monitor.Radius method)

 	(f5.bigip.ltm.monitor.Radius_Accounting method)

 	(f5.bigip.ltm.monitor.Radius_Accountings method)

 	(f5.bigip.ltm.monitor.Radius_s method)

 	(f5.bigip.ltm.monitor.Real_Server method)

 	(f5.bigip.ltm.monitor.Real_Servers method)

 	(f5.bigip.ltm.monitor.Rpc method)

 	(f5.bigip.ltm.monitor.Rpcs method)

 	(f5.bigip.ltm.monitor.Sasp method)

 	(f5.bigip.ltm.monitor.Sasps method)

 	(f5.bigip.ltm.monitor.Scripted method)

 	(f5.bigip.ltm.monitor.Scripteds method)

 	(f5.bigip.ltm.monitor.Sip method)

 	(f5.bigip.ltm.monitor.Sips method)

 	(f5.bigip.ltm.monitor.Smb method)

 	(f5.bigip.ltm.monitor.Smbs method)

 	(f5.bigip.ltm.monitor.Smtp method)

 	(f5.bigip.ltm.monitor.Smtps method)

 	(f5.bigip.ltm.monitor.Snmp_Dca method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Bases method)

 	(f5.bigip.ltm.monitor.Snmp_Dcas method)

 	(f5.bigip.ltm.monitor.Soap method)

 	(f5.bigip.ltm.monitor.Soaps method)

 	(f5.bigip.ltm.monitor.Tcp method)

 	(f5.bigip.ltm.monitor.Tcp_Echo method)

 	(f5.bigip.ltm.monitor.Tcp_Echos method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Opens method)

 	(f5.bigip.ltm.monitor.Tcps method)

 	(f5.bigip.ltm.monitor.Udp method)

 	(f5.bigip.ltm.monitor.Udps method)

 	(f5.bigip.ltm.monitor.Virtual_Location method)

 	(f5.bigip.ltm.monitor.Virtual_Locations method)

 	(f5.bigip.ltm.monitor.Wap method)

 	(f5.bigip.ltm.monitor.Waps method)

 	(f5.bigip.ltm.monitor.Wmi method)

 	(f5.bigip.ltm.monitor.Wmis method)

 	(f5.bigip.ltm.nat.Nat method)

 	(f5.bigip.ltm.nat.Nats method)

 	(f5.bigip.ltm.node.Node method)

 	(f5.bigip.ltm.node.Nodes method)

 	(f5.bigip.ltm.policy.Actions method)

 	(f5.bigip.ltm.policy.Actions_s method)

 	(f5.bigip.ltm.policy.Conditions method)

 	(f5.bigip.ltm.policy.Conditions_s method)

 	(f5.bigip.ltm.policy.Policy method)

 	(f5.bigip.ltm.policy.Policys method)

 	(f5.bigip.ltm.policy.Rules method)

 	(f5.bigip.ltm.policy.Rules_s method)

 	(f5.bigip.ltm.pool.Members method)

 	(f5.bigip.ltm.pool.Members_s method)

 	(f5.bigip.ltm.pool.Pool method)

 	(f5.bigip.ltm.pool.Pools method)

 	(f5.bigip.ltm.rule.Rule method)

 	(f5.bigip.ltm.rule.Rules method)

 	(f5.bigip.ltm.snat.Snat method)

 	(f5.bigip.ltm.snat.Snats method)

 	(f5.bigip.ltm.virtual.Virtual method)

 	(f5.bigip.ltm.virtual.Virtuals method)

 	(f5.bigip.mixins.UnnamedResourceMixin method)

 	(f5.bigip.net.arp.Arp method)

 	(f5.bigip.net.arp.Arps method)

 	(f5.bigip.net.fdb.Fdbs method)

 	(f5.bigip.net.fdb.Tunnel method)

 	(f5.bigip.net.fdb.Tunnels method)

 	(f5.bigip.net.fdb.Vlans method)

 	(f5.bigip.net.interface.Interface method)

 	(f5.bigip.net.interface.Interfaces method)

 	(f5.bigip.net.route.Route method)

 	(f5.bigip.net.route.Routes method)

 	(f5.bigip.net.route_domain.Route_Domain method)

 	(f5.bigip.net.route_domain.Route_Domains method)

 	(f5.bigip.net.selfip.Selfip method)

 	(f5.bigip.net.selfip.Selfips method)

 	(f5.bigip.net.tunnels.Gre method)

 	(f5.bigip.net.tunnels.Gres method)

 	(f5.bigip.net.tunnels.Tunnel method)

 	(f5.bigip.net.tunnels.Tunnels method)

 	(f5.bigip.net.tunnels.Tunnels_s method)

 	(f5.bigip.net.tunnels.Vxlan method)

 	(f5.bigip.net.tunnels.Vxlans method)

 	(f5.bigip.net.vlan.Interfaces method)

 	(f5.bigip.net.vlan.Interfaces_s method)

 	(f5.bigip.net.vlan.Vlan method)

 	(f5.bigip.net.vlan.Vlans method)

 	(f5.bigip.resource.Collection method)

 	(f5.bigip.resource.OrganizingCollection method)

 	(f5.bigip.resource.Resource method)

 	(f5.bigip.resource.ResourceBase method)

 	(f5.bigip.sys.application.Aplscript method)

 	(f5.bigip.sys.application.Aplscripts method)

 	(f5.bigip.sys.application.Applications method)

 	(f5.bigip.sys.application.Customstat method)

 	(f5.bigip.sys.application.Customstats method)

 	(f5.bigip.sys.application.Service method)

 	(f5.bigip.sys.application.Services method)

 	(f5.bigip.sys.application.Template method)

 	(f5.bigip.sys.application.Templates method)

 	(f5.bigip.sys.db.Db method)

 	(f5.bigip.sys.db.Dbs method)

 	(f5.bigip.sys.failover.Failover method)

 	(f5.bigip.sys.folder.Folders method)

 	(f5.bigip.sys.global_settings.Global_Settings method)

 	(f5.bigip.sys.ntp.Ntp method)

 	(f5.bigip.sys.ntp.Restrict method)

 	(f5.bigip.sys.ntp.Restricts method)

 	(f5.bigip.sys.performance.All_Stats method)

 	(f5.bigip.sys.performance.Performance method)

 	credentials() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	crit() (f5.common.logger.Log static method)

 	CurlyBraceMismatchException

 	Customstat (class in f5.bigip.sys.application)

 	Customstats (class in f5.bigip.sys.application)

D

 	

 	data (f5.bigip.pycontrol.pycontrol.InMemoryCache attribute)

 	Db (class in f5.bigip.sys.db)

 	Dbs (class in f5.bigip.sys.db)

 	debug() (f5.common.logger.Log static method)

 	delete() (f5.bigip.BigIP method)

 	

 	(f5.bigip.cm.Cm method)

 	(f5.bigip.cm.device.Device method)

 	(f5.bigip.cm.device.Devices method)

 	(f5.bigip.cm.device_group.Device_Group method)

 	(f5.bigip.cm.device_group.Device_Groups method)

 	(f5.bigip.cm.device_group.Devices method)

 	(f5.bigip.cm.device_group.Devices_s method)

 	(f5.bigip.cm.traffic_group.Traffic_Group method)

 	(f5.bigip.cm.traffic_group.Traffic_Groups method)

 	(f5.bigip.ltm.Ltm method)

 	(f5.bigip.ltm.monitor.Diameter method)

 	(f5.bigip.ltm.monitor.Diameters method)

 	(f5.bigip.ltm.monitor.Dns method)

 	(f5.bigip.ltm.monitor.Dns_s method)

 	(f5.bigip.ltm.monitor.External method)

 	(f5.bigip.ltm.monitor.Externals method)

 	(f5.bigip.ltm.monitor.Firepass method)

 	(f5.bigip.ltm.monitor.Firepass_s method)

 	(f5.bigip.ltm.monitor.Ftp method)

 	(f5.bigip.ltm.monitor.Ftps method)

 	(f5.bigip.ltm.monitor.Gateway_Icmp method)

 	(f5.bigip.ltm.monitor.Gateway_Icmps method)

 	(f5.bigip.ltm.monitor.Http method)

 	(f5.bigip.ltm.monitor.HttpS method)

 	(f5.bigip.ltm.monitor.Https method)

 	(f5.bigip.ltm.monitor.Https_s method)

 	(f5.bigip.ltm.monitor.Icmp method)

 	(f5.bigip.ltm.monitor.Icmps method)

 	(f5.bigip.ltm.monitor.Imap method)

 	(f5.bigip.ltm.monitor.Imaps method)

 	(f5.bigip.ltm.monitor.Inband method)

 	(f5.bigip.ltm.monitor.Inbands method)

 	(f5.bigip.ltm.monitor.Ldap method)

 	(f5.bigip.ltm.monitor.Ldaps method)

 	(f5.bigip.ltm.monitor.Module_Score method)

 	(f5.bigip.ltm.monitor.Module_Scores method)

 	(f5.bigip.ltm.monitor.Mssql method)

 	(f5.bigip.ltm.monitor.Mssqls method)

 	(f5.bigip.ltm.monitor.Mysql method)

 	(f5.bigip.ltm.monitor.Mysqls method)

 	(f5.bigip.ltm.monitor.NONE method)

 	(f5.bigip.ltm.monitor.Nntp method)

 	(f5.bigip.ltm.monitor.Nntps method)

 	(f5.bigip.ltm.monitor.Nones method)

 	(f5.bigip.ltm.monitor.Oracle method)

 	(f5.bigip.ltm.monitor.Oracles method)

 	(f5.bigip.ltm.monitor.Pop3 method)

 	(f5.bigip.ltm.monitor.Pop3s method)

 	(f5.bigip.ltm.monitor.Postgresql method)

 	(f5.bigip.ltm.monitor.Postgresqls method)

 	(f5.bigip.ltm.monitor.Radius method)

 	(f5.bigip.ltm.monitor.Radius_Accounting method)

 	(f5.bigip.ltm.monitor.Radius_Accountings method)

 	(f5.bigip.ltm.monitor.Radius_s method)

 	(f5.bigip.ltm.monitor.Real_Server method)

 	(f5.bigip.ltm.monitor.Real_Servers method)

 	(f5.bigip.ltm.monitor.Rpc method)

 	(f5.bigip.ltm.monitor.Rpcs method)

 	(f5.bigip.ltm.monitor.Sasp method)

 	(f5.bigip.ltm.monitor.Sasps method)

 	(f5.bigip.ltm.monitor.Scripted method)

 	(f5.bigip.ltm.monitor.Scripteds method)

 	(f5.bigip.ltm.monitor.Sip method)

 	(f5.bigip.ltm.monitor.Sips method)

 	(f5.bigip.ltm.monitor.Smb method)

 	(f5.bigip.ltm.monitor.Smbs method)

 	(f5.bigip.ltm.monitor.Smtp method)

 	(f5.bigip.ltm.monitor.Smtps method)

 	(f5.bigip.ltm.monitor.Snmp_Dca method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Bases method)

 	(f5.bigip.ltm.monitor.Snmp_Dcas method)

 	(f5.bigip.ltm.monitor.Soap method)

 	(f5.bigip.ltm.monitor.Soaps method)

 	(f5.bigip.ltm.monitor.Tcp method)

 	(f5.bigip.ltm.monitor.Tcp_Echo method)

 	(f5.bigip.ltm.monitor.Tcp_Echos method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Opens method)

 	(f5.bigip.ltm.monitor.Tcps method)

 	(f5.bigip.ltm.monitor.Udp method)

 	(f5.bigip.ltm.monitor.Udps method)

 	(f5.bigip.ltm.monitor.Virtual_Location method)

 	(f5.bigip.ltm.monitor.Virtual_Locations method)

 	(f5.bigip.ltm.monitor.Wap method)

 	(f5.bigip.ltm.monitor.Waps method)

 	(f5.bigip.ltm.monitor.Wmi method)

 	(f5.bigip.ltm.monitor.Wmis method)

 	(f5.bigip.ltm.nat.Nat method)

 	(f5.bigip.ltm.nat.Nats method)

 	(f5.bigip.ltm.node.Node method)

 	(f5.bigip.ltm.node.Nodes method)

 	(f5.bigip.ltm.policy.Actions method)

 	(f5.bigip.ltm.policy.Actions_s method)

 	(f5.bigip.ltm.policy.Conditions method)

 	(f5.bigip.ltm.policy.Conditions_s method)

 	(f5.bigip.ltm.policy.Policy method)

 	(f5.bigip.ltm.policy.Policys method)

 	(f5.bigip.ltm.policy.Rules method)

 	(f5.bigip.ltm.policy.Rules_s method)

 	(f5.bigip.ltm.pool.Members method)

 	(f5.bigip.ltm.pool.Members_s method)

 	(f5.bigip.ltm.pool.Pool method)

 	(f5.bigip.ltm.pool.Pools method)

 	(f5.bigip.ltm.rule.Rule method)

 	(f5.bigip.ltm.rule.Rules method)

 	(f5.bigip.ltm.snat.Snat method)

 	(f5.bigip.ltm.snat.Snats method)

 	(f5.bigip.ltm.virtual.Virtual method)

 	(f5.bigip.ltm.virtual.Virtuals method)

 	(f5.bigip.mixins.UnnamedResourceMixin method)

 	(f5.bigip.net.arp.Arp method)

 	(f5.bigip.net.arp.Arps method)

 	(f5.bigip.net.fdb.Fdbs method)

 	(f5.bigip.net.fdb.Tunnel method)

 	(f5.bigip.net.fdb.Tunnels method)

 	(f5.bigip.net.fdb.Vlans method)

 	(f5.bigip.net.interface.Interface method)

 	(f5.bigip.net.interface.Interfaces method)

 	(f5.bigip.net.route.Route method)

 	(f5.bigip.net.route.Routes method)

 	(f5.bigip.net.route_domain.Route_Domain method)

 	(f5.bigip.net.route_domain.Route_Domains method)

 	(f5.bigip.net.selfip.Selfip method)

 	(f5.bigip.net.selfip.Selfips method)

 	(f5.bigip.net.tunnels.Gre method)

 	(f5.bigip.net.tunnels.Gres method)

 	(f5.bigip.net.tunnels.Tunnel method)

 	(f5.bigip.net.tunnels.Tunnels method)

 	(f5.bigip.net.tunnels.Tunnels_s method)

 	(f5.bigip.net.tunnels.Vxlan method)

 	(f5.bigip.net.tunnels.Vxlans method)

 	(f5.bigip.net.vlan.Interfaces method)

 	(f5.bigip.net.vlan.Interfaces_s method)

 	(f5.bigip.net.vlan.Vlan method)

 	(f5.bigip.net.vlan.Vlans method)

 	(f5.bigip.resource.Collection method)

 	(f5.bigip.resource.OrganizingCollection method)

 	(f5.bigip.resource.Resource method)

 	(f5.bigip.resource.ResourceBase method)

 	(f5.bigip.sys.application.Aplscript method)

 	(f5.bigip.sys.application.Aplscripts method)

 	(f5.bigip.sys.application.Applications method)

 	(f5.bigip.sys.application.Customstat method)

 	(f5.bigip.sys.application.Customstats method)

 	(f5.bigip.sys.application.Service method)

 	(f5.bigip.sys.application.Services method)

 	(f5.bigip.sys.application.Template method)

 	(f5.bigip.sys.application.Templates method)

 	(f5.bigip.sys.db.Db method)

 	(f5.bigip.sys.db.Dbs method)

 	(f5.bigip.sys.failover.Failover method)

 	(f5.bigip.sys.folder.Folders method)

 	(f5.bigip.sys.global_settings.Global_Settings method)

 	(f5.bigip.sys.ntp.Ntp method)

 	(f5.bigip.sys.ntp.Restrict method)

 	(f5.bigip.sys.ntp.Restricts method)

 	(f5.bigip.sys.performance.All_Stats method)

 	(f5.bigip.sys.performance.Performance method)

 	Device (class in f5.bigip.cm.device)

 	Device_Group (class in f5.bigip.cm.device_group)

 	Device_Groups (class in f5.bigip.cm.device_group)

 	

 	DeviceProvidesIncompatibleKey

 	Devices (class in f5.bigip.cm.device)

 	

 	(class in f5.bigip.cm.device_group)

 	Devices_s (class in f5.bigip.cm.device_group)

 	Diameter (class in f5.bigip.ltm.monitor)

 	Diameters (class in f5.bigip.ltm.monitor)

 	dict() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	Dns (class in f5.bigip.ltm.monitor)

 	Dns_s (class in f5.bigip.ltm.monitor)

E

 	

 	EmptyTemplateException

 	error() (f5.common.logger.Log static method)

 	ExclusiveAttributesMixin (class in f5.bigip.mixins)

 	

 	exists() (f5.bigip.cm.device.Device method)

 	

 	(f5.bigip.cm.device_group.Device_Group method)

 	(f5.bigip.cm.device_group.Devices method)

 	(f5.bigip.cm.traffic_group.Traffic_Group method)

 	(f5.bigip.ltm.monitor.Diameter method)

 	(f5.bigip.ltm.monitor.Dns method)

 	(f5.bigip.ltm.monitor.External method)

 	(f5.bigip.ltm.monitor.Firepass method)

 	(f5.bigip.ltm.monitor.Ftp method)

 	(f5.bigip.ltm.monitor.Gateway_Icmp method)

 	(f5.bigip.ltm.monitor.Http method)

 	(f5.bigip.ltm.monitor.HttpS method)

 	(f5.bigip.ltm.monitor.Icmp method)

 	(f5.bigip.ltm.monitor.Imap method)

 	(f5.bigip.ltm.monitor.Inband method)

 	(f5.bigip.ltm.monitor.Ldap method)

 	(f5.bigip.ltm.monitor.Module_Score method)

 	(f5.bigip.ltm.monitor.Mssql method)

 	(f5.bigip.ltm.monitor.Mysql method)

 	(f5.bigip.ltm.monitor.NONE method)

 	(f5.bigip.ltm.monitor.Nntp method)

 	(f5.bigip.ltm.monitor.Oracle method)

 	(f5.bigip.ltm.monitor.Pop3 method)

 	(f5.bigip.ltm.monitor.Postgresql method)

 	(f5.bigip.ltm.monitor.Radius method)

 	(f5.bigip.ltm.monitor.Radius_Accounting method)

 	(f5.bigip.ltm.monitor.Real_Server method)

 	(f5.bigip.ltm.monitor.Rpc method)

 	(f5.bigip.ltm.monitor.Sasp method)

 	(f5.bigip.ltm.monitor.Scripted method)

 	(f5.bigip.ltm.monitor.Sip method)

 	(f5.bigip.ltm.monitor.Smb method)

 	(f5.bigip.ltm.monitor.Smtp method)

 	(f5.bigip.ltm.monitor.Snmp_Dca method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base method)

 	(f5.bigip.ltm.monitor.Soap method)

 	(f5.bigip.ltm.monitor.Tcp method)

 	(f5.bigip.ltm.monitor.Tcp_Echo method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open method)

 	(f5.bigip.ltm.monitor.Udp method)

 	(f5.bigip.ltm.monitor.Virtual_Location method)

 	(f5.bigip.ltm.monitor.Wap method)

 	(f5.bigip.ltm.monitor.Wmi method)

 	(f5.bigip.ltm.nat.Nat method)

 	(f5.bigip.ltm.node.Node method)

 	(f5.bigip.ltm.policy.Actions method)

 	(f5.bigip.ltm.policy.Conditions method)

 	(f5.bigip.ltm.policy.Policy method)

 	(f5.bigip.ltm.policy.Rules method)

 	(f5.bigip.ltm.pool.Members method)

 	(f5.bigip.ltm.pool.Pool method)

 	(f5.bigip.ltm.rule.Rule method)

 	(f5.bigip.ltm.snat.Snat method)

 	(f5.bigip.ltm.virtual.Virtual method)

 	(f5.bigip.net.arp.Arp method)

 	(f5.bigip.net.fdb.Tunnel method)

 	(f5.bigip.net.interface.Interface method)

 	(f5.bigip.net.route.Route method)

 	(f5.bigip.net.route_domain.Route_Domain method)

 	(f5.bigip.net.selfip.Selfip method)

 	(f5.bigip.net.tunnels.Gre method)

 	(f5.bigip.net.tunnels.Tunnel method)

 	(f5.bigip.net.tunnels.Vxlan method)

 	(f5.bigip.net.vlan.Interfaces method)

 	(f5.bigip.net.vlan.Vlan method)

 	(f5.bigip.resource.Resource method)

 	(f5.bigip.sys.application.Aplscript method)

 	(f5.bigip.sys.application.Customstat method)

 	(f5.bigip.sys.application.Service method)

 	(f5.bigip.sys.application.Template method)

 	(f5.bigip.sys.db.Db method)

 	(f5.bigip.sys.failover.Failover method)

 	(f5.bigip.sys.global_settings.Global_Settings method)

 	(f5.bigip.sys.ntp.Ntp method)

 	(f5.bigip.sys.ntp.Restrict method)

 	(f5.bigip.sys.performance.All_Stats method)

 	External (class in f5.bigip.ltm.monitor)

 	Externals (class in f5.bigip.ltm.monitor)

F

 	

 	f5 (module)

 	f5.bigip (module)

 	f5.bigip.cm (module)

 	f5.bigip.cm.device (module)

 	f5.bigip.cm.device_group (module)

 	f5.bigip.cm.traffic_group (module)

 	f5.bigip.ltm (module)

 	f5.bigip.ltm.monitor (module)

 	f5.bigip.ltm.nat (module)

 	f5.bigip.ltm.node (module)

 	f5.bigip.ltm.policy (module)

 	f5.bigip.ltm.pool (module)

 	f5.bigip.ltm.rule (module)

 	f5.bigip.ltm.snat (module)

 	f5.bigip.ltm.virtual (module)

 	f5.bigip.mixins (module)

 	f5.bigip.net (module)

 	f5.bigip.net.arp (module)

 	f5.bigip.net.fdb (module)

 	f5.bigip.net.interface (module)

 	f5.bigip.net.route (module)

 	f5.bigip.net.route_domain (module)

 	f5.bigip.net.selfip (module)

 	f5.bigip.net.tunnels (module)

 	f5.bigip.net.vlan (module)

 	

 	f5.bigip.pycontrol (module)

 	f5.bigip.pycontrol.pycontrol (module)

 	f5.bigip.resource (module)

 	f5.bigip.sys (module)

 	f5.bigip.sys.application (module)

 	f5.bigip.sys.db (module)

 	f5.bigip.sys.failover (module)

 	f5.bigip.sys.folder (module)

 	f5.bigip.sys.global_settings (module)

 	f5.bigip.sys.ntp (module)

 	f5.bigip.sys.performance (module)

 	f5.common (module)

 	f5.common.constants (module)

 	f5.common.iapp_parser (module)

 	f5.common.logger (module)

 	f5.sdk_exception (module)

 	F5Error

 	F5SDKError

 	Failover (class in f5.bigip.sys.failover)

 	Fdbs (class in f5.bigip.net.fdb)

 	Firepass (class in f5.bigip.ltm.monitor)

 	Firepass_s (class in f5.bigip.ltm.monitor)

 	Folders (class in f5.bigip.sys.folder)

 	Ftp (class in f5.bigip.ltm.monitor)

 	Ftps (class in f5.bigip.ltm.monitor)

G

 	

 	Gateway_Icmp (class in f5.bigip.ltm.monitor)

 	Gateway_Icmps (class in f5.bigip.ltm.monitor)

 	GenerationMismatch

 	get() (f5.bigip.pycontrol.pycontrol.InMemoryCache method)

 	get_collection() (f5.bigip.BigIP method)

 	

 	(f5.bigip.cm.Cm method)

 	(f5.bigip.cm.device.Devices method)

 	(f5.bigip.cm.device_group.Device_Groups method)

 	(f5.bigip.cm.device_group.Devices_s method)

 	(f5.bigip.cm.traffic_group.Traffic_Groups method)

 	(f5.bigip.ltm.Ltm method)

 	(f5.bigip.ltm.monitor.Diameters method)

 	(f5.bigip.ltm.monitor.Dns_s method)

 	(f5.bigip.ltm.monitor.Externals method)

 	(f5.bigip.ltm.monitor.Firepass_s method)

 	(f5.bigip.ltm.monitor.Ftps method)

 	(f5.bigip.ltm.monitor.Gateway_Icmps method)

 	(f5.bigip.ltm.monitor.Https method)

 	(f5.bigip.ltm.monitor.Https_s method)

 	(f5.bigip.ltm.monitor.Icmps method)

 	(f5.bigip.ltm.monitor.Imaps method)

 	(f5.bigip.ltm.monitor.Inbands method)

 	(f5.bigip.ltm.monitor.Ldaps method)

 	(f5.bigip.ltm.monitor.Module_Scores method)

 	(f5.bigip.ltm.monitor.Mssqls method)

 	(f5.bigip.ltm.monitor.Mysqls method)

 	(f5.bigip.ltm.monitor.Nntps method)

 	(f5.bigip.ltm.monitor.Nones method)

 	(f5.bigip.ltm.monitor.Oracles method)

 	(f5.bigip.ltm.monitor.Pop3s method)

 	(f5.bigip.ltm.monitor.Postgresqls method)

 	(f5.bigip.ltm.monitor.Radius_Accountings method)

 	(f5.bigip.ltm.monitor.Radius_s method)

 	(f5.bigip.ltm.monitor.Real_Servers method)

 	(f5.bigip.ltm.monitor.Rpcs method)

 	(f5.bigip.ltm.monitor.Sasps method)

 	(f5.bigip.ltm.monitor.Scripteds method)

 	(f5.bigip.ltm.monitor.Sips method)

 	(f5.bigip.ltm.monitor.Smbs method)

 	(f5.bigip.ltm.monitor.Smtps method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Bases method)

 	(f5.bigip.ltm.monitor.Snmp_Dcas method)

 	(f5.bigip.ltm.monitor.Soaps method)

 	(f5.bigip.ltm.monitor.Tcp_Echos method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Opens method)

 	(f5.bigip.ltm.monitor.Tcps method)

 	(f5.bigip.ltm.monitor.Udps method)

 	(f5.bigip.ltm.monitor.Virtual_Locations method)

 	(f5.bigip.ltm.monitor.Waps method)

 	(f5.bigip.ltm.monitor.Wmis method)

 	(f5.bigip.ltm.nat.Nats method)

 	(f5.bigip.ltm.node.Nodes method)

 	(f5.bigip.ltm.policy.Actions_s method)

 	(f5.bigip.ltm.policy.Conditions_s method)

 	(f5.bigip.ltm.policy.Policys method)

 	(f5.bigip.ltm.policy.Rules_s method)

 	(f5.bigip.ltm.pool.Members_s method)

 	(f5.bigip.ltm.pool.Pools method)

 	(f5.bigip.ltm.rule.Rules method)

 	(f5.bigip.ltm.snat.Snats method)

 	(f5.bigip.ltm.virtual.Virtuals method)

 	(f5.bigip.net.arp.Arps method)

 	(f5.bigip.net.fdb.Fdbs method)

 	(f5.bigip.net.fdb.Tunnels method)

 	(f5.bigip.net.fdb.Vlans method)

 	(f5.bigip.net.interface.Interfaces method)

 	(f5.bigip.net.route.Routes method)

 	(f5.bigip.net.route_domain.Route_Domains method)

 	(f5.bigip.net.selfip.Selfips method)

 	(f5.bigip.net.tunnels.Gres method)

 	(f5.bigip.net.tunnels.Tunnels method)

 	(f5.bigip.net.tunnels.Tunnels_s method)

 	(f5.bigip.net.tunnels.Vxlans method)

 	(f5.bigip.net.vlan.Interfaces_s method)

 	(f5.bigip.net.vlan.Vlans method)

 	(f5.bigip.resource.Collection method)

 	(f5.bigip.resource.OrganizingCollection method)

 	(f5.bigip.sys.application.Aplscripts method)

 	(f5.bigip.sys.application.Applications method)

 	(f5.bigip.sys.application.Customstats method)

 	(f5.bigip.sys.application.Services method)

 	(f5.bigip.sys.application.Templates method)

 	(f5.bigip.sys.db.Dbs method)

 	(f5.bigip.sys.folder.Folders method)

 	(f5.bigip.sys.ntp.Restricts method)

 	(f5.bigip.sys.performance.Performance method)

 	get_sessionid() (f5.bigip.pycontrol.pycontrol.BIGIP method)

 	

 	getcookies() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	getf() (f5.bigip.pycontrol.pycontrol.InMemoryCache method)

 	Global_Settings (class in f5.bigip.sys.global_settings)

 	Gre (class in f5.bigip.net.tunnels)

 	Gres (class in f5.bigip.net.tunnels)

H

 	

 	Http (class in f5.bigip.ltm.monitor)

 	HttpS (class in f5.bigip.ltm.monitor)

 	Https (class in f5.bigip.ltm.monitor)

 	

 	Https_s (class in f5.bigip.ltm.monitor)

 	HTTPSUnVerifiedCertTransport (class in f5.bigip.pycontrol.pycontrol)

I

 	

 	IappParser (class in f5.common.iapp_parser)

 	Icmp (class in f5.bigip.ltm.monitor)

 	Icmps (class in f5.bigip.ltm.monitor)

 	Imap (class in f5.bigip.ltm.monitor)

 	Imaps (class in f5.bigip.ltm.monitor)

 	Inband (class in f5.bigip.ltm.monitor)

 	Inbands (class in f5.bigip.ltm.monitor)

 	info() (f5.common.logger.Log static method)

 	

 	InMemoryCache (class in f5.bigip.pycontrol.pycontrol)

 	Interface (class in f5.bigip.net.interface)

 	InterfaceInstance (class in f5.bigip.pycontrol.pycontrol)

 	Interfaces (class in f5.bigip.net.interface)

 	

 	(class in f5.bigip.net.vlan)

 	Interfaces_s (class in f5.bigip.net.vlan)

 	InvalidForceType

 	InvalidResource

 	items() (f5.bigip.pycontrol.pycontrol.ROClient method)

K

 	

 	KindTypeMismatch

L

 	

 	last_received() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	last_sent() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	LazyAttributeMixin (class in f5.bigip.mixins)

 	LazyAttributesRequired

 	Ldap (class in f5.bigip.ltm.monitor)

 	

 	Ldaps (class in f5.bigip.ltm.monitor)

 	load() (f5.bigip.cm.device.Device method)

 	

 	(f5.bigip.cm.device_group.Device_Group method)

 	(f5.bigip.cm.device_group.Devices method)

 	(f5.bigip.cm.traffic_group.Traffic_Group method)

 	(f5.bigip.ltm.monitor.Diameter method)

 	(f5.bigip.ltm.monitor.Dns method)

 	(f5.bigip.ltm.monitor.External method)

 	(f5.bigip.ltm.monitor.Firepass method)

 	(f5.bigip.ltm.monitor.Ftp method)

 	(f5.bigip.ltm.monitor.Gateway_Icmp method)

 	(f5.bigip.ltm.monitor.Http method)

 	(f5.bigip.ltm.monitor.HttpS method)

 	(f5.bigip.ltm.monitor.Icmp method)

 	(f5.bigip.ltm.monitor.Imap method)

 	(f5.bigip.ltm.monitor.Inband method)

 	(f5.bigip.ltm.monitor.Ldap method)

 	(f5.bigip.ltm.monitor.Module_Score method)

 	(f5.bigip.ltm.monitor.Mssql method)

 	(f5.bigip.ltm.monitor.Mysql method)

 	(f5.bigip.ltm.monitor.NONE method)

 	(f5.bigip.ltm.monitor.Nntp method)

 	(f5.bigip.ltm.monitor.Oracle method)

 	(f5.bigip.ltm.monitor.Pop3 method)

 	(f5.bigip.ltm.monitor.Postgresql method)

 	(f5.bigip.ltm.monitor.Radius method)

 	(f5.bigip.ltm.monitor.Radius_Accounting method)

 	(f5.bigip.ltm.monitor.Real_Server method)

 	(f5.bigip.ltm.monitor.Rpc method)

 	(f5.bigip.ltm.monitor.Sasp method)

 	(f5.bigip.ltm.monitor.Scripted method)

 	(f5.bigip.ltm.monitor.Sip method)

 	(f5.bigip.ltm.monitor.Smb method)

 	(f5.bigip.ltm.monitor.Smtp method)

 	(f5.bigip.ltm.monitor.Snmp_Dca method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base method)

 	(f5.bigip.ltm.monitor.Soap method)

 	(f5.bigip.ltm.monitor.Tcp method)

 	(f5.bigip.ltm.monitor.Tcp_Echo method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open method)

 	(f5.bigip.ltm.monitor.Udp method)

 	(f5.bigip.ltm.monitor.Virtual_Location method)

 	(f5.bigip.ltm.monitor.Wap method)

 	(f5.bigip.ltm.monitor.Wmi method)

 	(f5.bigip.ltm.nat.Nat method)

 	(f5.bigip.ltm.node.Node method)

 	(f5.bigip.ltm.policy.Actions method)

 	(f5.bigip.ltm.policy.Conditions method)

 	(f5.bigip.ltm.policy.Policy method)

 	(f5.bigip.ltm.policy.Rules method)

 	(f5.bigip.ltm.pool.Members method)

 	(f5.bigip.ltm.pool.Pool method)

 	(f5.bigip.ltm.rule.Rule method)

 	(f5.bigip.ltm.snat.Snat method)

 	(f5.bigip.ltm.virtual.Virtual method)

 	(f5.bigip.net.arp.Arp method)

 	(f5.bigip.net.fdb.Tunnel method)

 	(f5.bigip.net.interface.Interface method)

 	(f5.bigip.net.route.Route method)

 	(f5.bigip.net.route_domain.Route_Domain method)

 	(f5.bigip.net.selfip.Selfip method)

 	(f5.bigip.net.tunnels.Gre method)

 	(f5.bigip.net.tunnels.Tunnel method)

 	(f5.bigip.net.tunnels.Vxlan method)

 	(f5.bigip.net.vlan.Interfaces method)

 	(f5.bigip.net.vlan.Vlan method)

 	(f5.bigip.resource.Resource method)

 	(f5.bigip.sys.application.Aplscript method)

 	(f5.bigip.sys.application.Customstat method)

 	(f5.bigip.sys.application.Service method)

 	(f5.bigip.sys.application.Template method)

 	(f5.bigip.sys.db.Db method)

 	(f5.bigip.sys.ntp.Restrict method)

 	Log (class in f5.common.logger)

 	Ltm (class in f5.bigip.ltm)

M

 	

 	main() (in module f5.bigip.pycontrol.pycontrol)

 	MalformedTCLListException

 	Members (class in f5.bigip.ltm.pool)

 	Members_s (class in f5.bigip.ltm.pool)

 	message (f5.bigip.pycontrol.F5Error attribute)

 	

 	(f5.common.iapp_parser.CurlyBraceMismatchException attribute)

 	(f5.common.iapp_parser.EmptyTemplateException attribute)

 	(f5.common.iapp_parser.MalformedTCLListException attribute)

 	(f5.common.iapp_parser.NonextantSectionException attribute)

 	(f5.common.iapp_parser.NonextantTemplateNameException attribute)

 	metadata() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	MissingRequiredCreationParameter

 	MissingRequiredReadParameter

 	

 	Module_Score (class in f5.bigip.ltm.monitor)

 	Module_Scores (class in f5.bigip.ltm.monitor)

 	ModuleInstance (class in f5.bigip.pycontrol.pycontrol)

 	Mssql (class in f5.bigip.ltm.monitor)

 	Mssqls (class in f5.bigip.ltm.monitor)

 	Mysql (class in f5.bigip.ltm.monitor)

 	Mysqls (class in f5.bigip.ltm.monitor)

N

 	

 	Nat (class in f5.bigip.ltm.nat)

 	Nats (class in f5.bigip.ltm.nat)

 	Nntp (class in f5.bigip.ltm.monitor)

 	Nntps (class in f5.bigip.ltm.monitor)

 	Node (class in f5.bigip.ltm.node)

 	Nodes (class in f5.bigip.ltm.node)

 	

 	NONE (class in f5.bigip.ltm.monitor)

 	Nones (class in f5.bigip.ltm.monitor)

 	NonextantSectionException

 	NonextantTemplateNameException

 	Ntp (class in f5.bigip.sys.ntp)

O

 	

 	open() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	Oracle (class in f5.bigip.ltm.monitor)

 	

 	Oracles (class in f5.bigip.ltm.monitor)

 	OrganizingCollection (class in f5.bigip.resource)

P

 	

 	parse_template() (f5.common.iapp_parser.IappParser method)

 	Performance (class in f5.bigip.sys.performance)

 	Policy (class in f5.bigip.ltm.policy)

 	Policys (class in f5.bigip.ltm.policy)

 	Pool (class in f5.bigip.ltm.pool)

 	Pools (class in f5.bigip.ltm.pool)

 	Pop3 (class in f5.bigip.ltm.monitor)

 	

 	Pop3s (class in f5.bigip.ltm.monitor)

 	Postgresql (class in f5.bigip.ltm.monitor)

 	Postgresqls (class in f5.bigip.ltm.monitor)

 	purge() (f5.bigip.pycontrol.pycontrol.InMemoryCache method)

 	put() (f5.bigip.pycontrol.pycontrol.InMemoryCache method)

 	putf() (f5.bigip.pycontrol.pycontrol.InMemoryCache method)

R

 	

 	Radius (class in f5.bigip.ltm.monitor)

 	Radius_Accounting (class in f5.bigip.ltm.monitor)

 	Radius_Accountings (class in f5.bigip.ltm.monitor)

 	Radius_s (class in f5.bigip.ltm.monitor)

 	raw (f5.bigip.BigIP attribute)

 	

 	(f5.bigip.cm.Cm attribute)

 	(f5.bigip.cm.device.Device attribute)

 	(f5.bigip.cm.device.Devices attribute)

 	(f5.bigip.cm.device_group.Device_Group attribute)

 	(f5.bigip.cm.device_group.Device_Groups attribute)

 	(f5.bigip.cm.device_group.Devices attribute)

 	(f5.bigip.cm.device_group.Devices_s attribute)

 	(f5.bigip.cm.traffic_group.Traffic_Group attribute)

 	(f5.bigip.cm.traffic_group.Traffic_Groups attribute)

 	(f5.bigip.ltm.Ltm attribute)

 	(f5.bigip.ltm.monitor.Diameter attribute)

 	(f5.bigip.ltm.monitor.Diameters attribute)

 	(f5.bigip.ltm.monitor.Dns attribute)

 	(f5.bigip.ltm.monitor.Dns_s attribute)

 	(f5.bigip.ltm.monitor.External attribute)

 	(f5.bigip.ltm.monitor.Externals attribute)

 	(f5.bigip.ltm.monitor.Firepass attribute)

 	(f5.bigip.ltm.monitor.Firepass_s attribute)

 	(f5.bigip.ltm.monitor.Ftp attribute)

 	(f5.bigip.ltm.monitor.Ftps attribute)

 	(f5.bigip.ltm.monitor.Gateway_Icmp attribute)

 	(f5.bigip.ltm.monitor.Gateway_Icmps attribute)

 	(f5.bigip.ltm.monitor.Http attribute)

 	(f5.bigip.ltm.monitor.HttpS attribute)

 	(f5.bigip.ltm.monitor.Https attribute)

 	(f5.bigip.ltm.monitor.Https_s attribute)

 	(f5.bigip.ltm.monitor.Icmp attribute)

 	(f5.bigip.ltm.monitor.Icmps attribute)

 	(f5.bigip.ltm.monitor.Imap attribute)

 	(f5.bigip.ltm.monitor.Imaps attribute)

 	(f5.bigip.ltm.monitor.Inband attribute)

 	(f5.bigip.ltm.monitor.Inbands attribute)

 	(f5.bigip.ltm.monitor.Ldap attribute)

 	(f5.bigip.ltm.monitor.Ldaps attribute)

 	(f5.bigip.ltm.monitor.Module_Score attribute)

 	(f5.bigip.ltm.monitor.Module_Scores attribute)

 	(f5.bigip.ltm.monitor.Mssql attribute)

 	(f5.bigip.ltm.monitor.Mssqls attribute)

 	(f5.bigip.ltm.monitor.Mysql attribute)

 	(f5.bigip.ltm.monitor.Mysqls attribute)

 	(f5.bigip.ltm.monitor.NONE attribute)

 	(f5.bigip.ltm.monitor.Nntp attribute)

 	(f5.bigip.ltm.monitor.Nntps attribute)

 	(f5.bigip.ltm.monitor.Nones attribute)

 	(f5.bigip.ltm.monitor.Oracle attribute)

 	(f5.bigip.ltm.monitor.Oracles attribute)

 	(f5.bigip.ltm.monitor.Pop3 attribute)

 	(f5.bigip.ltm.monitor.Pop3s attribute)

 	(f5.bigip.ltm.monitor.Postgresql attribute)

 	(f5.bigip.ltm.monitor.Postgresqls attribute)

 	(f5.bigip.ltm.monitor.Radius attribute)

 	(f5.bigip.ltm.monitor.Radius_Accounting attribute)

 	(f5.bigip.ltm.monitor.Radius_Accountings attribute)

 	(f5.bigip.ltm.monitor.Radius_s attribute)

 	(f5.bigip.ltm.monitor.Real_Server attribute)

 	(f5.bigip.ltm.monitor.Real_Servers attribute)

 	(f5.bigip.ltm.monitor.Rpc attribute)

 	(f5.bigip.ltm.monitor.Rpcs attribute)

 	(f5.bigip.ltm.monitor.Sasp attribute)

 	(f5.bigip.ltm.monitor.Sasps attribute)

 	(f5.bigip.ltm.monitor.Scripted attribute)

 	(f5.bigip.ltm.monitor.Scripteds attribute)

 	(f5.bigip.ltm.monitor.Sip attribute)

 	(f5.bigip.ltm.monitor.Sips attribute)

 	(f5.bigip.ltm.monitor.Smb attribute)

 	(f5.bigip.ltm.monitor.Smbs attribute)

 	(f5.bigip.ltm.monitor.Smtp attribute)

 	(f5.bigip.ltm.monitor.Smtps attribute)

 	(f5.bigip.ltm.monitor.Snmp_Dca attribute)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base attribute)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Bases attribute)

 	(f5.bigip.ltm.monitor.Snmp_Dcas attribute)

 	(f5.bigip.ltm.monitor.Soap attribute)

 	(f5.bigip.ltm.monitor.Soaps attribute)

 	(f5.bigip.ltm.monitor.Tcp attribute)

 	(f5.bigip.ltm.monitor.Tcp_Echo attribute)

 	(f5.bigip.ltm.monitor.Tcp_Echos attribute)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open attribute)

 	(f5.bigip.ltm.monitor.Tcp_Half_Opens attribute)

 	(f5.bigip.ltm.monitor.Tcps attribute)

 	(f5.bigip.ltm.monitor.Udp attribute)

 	(f5.bigip.ltm.monitor.Udps attribute)

 	(f5.bigip.ltm.monitor.Virtual_Location attribute)

 	(f5.bigip.ltm.monitor.Virtual_Locations attribute)

 	(f5.bigip.ltm.monitor.Wap attribute)

 	(f5.bigip.ltm.monitor.Waps attribute)

 	(f5.bigip.ltm.monitor.Wmi attribute)

 	(f5.bigip.ltm.monitor.Wmis attribute)

 	(f5.bigip.ltm.nat.Nat attribute)

 	(f5.bigip.ltm.nat.Nats attribute)

 	(f5.bigip.ltm.node.Node attribute)

 	(f5.bigip.ltm.node.Nodes attribute)

 	(f5.bigip.ltm.policy.Actions attribute)

 	(f5.bigip.ltm.policy.Actions_s attribute)

 	(f5.bigip.ltm.policy.Conditions attribute)

 	(f5.bigip.ltm.policy.Conditions_s attribute)

 	(f5.bigip.ltm.policy.Policy attribute)

 	(f5.bigip.ltm.policy.Policys attribute)

 	(f5.bigip.ltm.policy.Rules attribute)

 	(f5.bigip.ltm.policy.Rules_s attribute)

 	(f5.bigip.ltm.pool.Members attribute)

 	(f5.bigip.ltm.pool.Members_s attribute)

 	(f5.bigip.ltm.pool.Pool attribute)

 	(f5.bigip.ltm.pool.Pools attribute)

 	(f5.bigip.ltm.rule.Rule attribute)

 	(f5.bigip.ltm.rule.Rules attribute)

 	(f5.bigip.ltm.snat.Snat attribute)

 	(f5.bigip.ltm.snat.Snats attribute)

 	(f5.bigip.ltm.virtual.Virtual attribute)

 	(f5.bigip.ltm.virtual.Virtuals attribute)

 	(f5.bigip.net.arp.Arp attribute)

 	(f5.bigip.net.arp.Arps attribute)

 	(f5.bigip.net.fdb.Fdbs attribute)

 	(f5.bigip.net.fdb.Tunnel attribute)

 	(f5.bigip.net.fdb.Tunnels attribute)

 	(f5.bigip.net.fdb.Vlans attribute)

 	(f5.bigip.net.interface.Interface attribute)

 	(f5.bigip.net.interface.Interfaces attribute)

 	(f5.bigip.net.route.Route attribute)

 	(f5.bigip.net.route.Routes attribute)

 	(f5.bigip.net.route_domain.Route_Domain attribute)

 	(f5.bigip.net.route_domain.Route_Domains attribute)

 	(f5.bigip.net.selfip.Selfip attribute)

 	(f5.bigip.net.selfip.Selfips attribute)

 	(f5.bigip.net.tunnels.Gre attribute)

 	(f5.bigip.net.tunnels.Gres attribute)

 	(f5.bigip.net.tunnels.Tunnel attribute)

 	(f5.bigip.net.tunnels.Tunnels attribute)

 	(f5.bigip.net.tunnels.Tunnels_s attribute)

 	(f5.bigip.net.tunnels.Vxlan attribute)

 	(f5.bigip.net.tunnels.Vxlans attribute)

 	(f5.bigip.net.vlan.Interfaces attribute)

 	(f5.bigip.net.vlan.Interfaces_s attribute)

 	(f5.bigip.net.vlan.Vlan attribute)

 	(f5.bigip.net.vlan.Vlans attribute)

 	(f5.bigip.resource.Collection attribute)

 	(f5.bigip.resource.OrganizingCollection attribute)

 	(f5.bigip.resource.Resource attribute)

 	(f5.bigip.resource.ResourceBase attribute)

 	(f5.bigip.sys.application.Aplscript attribute)

 	(f5.bigip.sys.application.Aplscripts attribute)

 	(f5.bigip.sys.application.Applications attribute)

 	(f5.bigip.sys.application.Customstat attribute)

 	(f5.bigip.sys.application.Customstats attribute)

 	(f5.bigip.sys.application.Service attribute)

 	(f5.bigip.sys.application.Services attribute)

 	(f5.bigip.sys.application.Template attribute)

 	(f5.bigip.sys.application.Templates attribute)

 	(f5.bigip.sys.db.Db attribute)

 	(f5.bigip.sys.db.Dbs attribute)

 	(f5.bigip.sys.failover.Failover attribute)

 	(f5.bigip.sys.folder.Folders attribute)

 	(f5.bigip.sys.global_settings.Global_Settings attribute)

 	(f5.bigip.sys.ntp.Ntp attribute)

 	(f5.bigip.sys.ntp.Restrict attribute)

 	(f5.bigip.sys.ntp.Restricts attribute)

 	(f5.bigip.sys.performance.All_Stats attribute)

 	(f5.bigip.sys.performance.Performance attribute)

 	Real_Server (class in f5.bigip.ltm.monitor)

 	Real_Servers (class in f5.bigip.ltm.monitor)

 	refresh() (f5.bigip.BigIP method)

 	

 	(f5.bigip.cm.Cm method)

 	(f5.bigip.cm.device.Device method)

 	(f5.bigip.cm.device.Devices method)

 	(f5.bigip.cm.device_group.Device_Group method)

 	(f5.bigip.cm.device_group.Device_Groups method)

 	(f5.bigip.cm.device_group.Devices method)

 	(f5.bigip.cm.device_group.Devices_s method)

 	(f5.bigip.cm.traffic_group.Traffic_Group method)

 	(f5.bigip.cm.traffic_group.Traffic_Groups method)

 	(f5.bigip.ltm.Ltm method)

 	(f5.bigip.ltm.monitor.Diameter method)

 	(f5.bigip.ltm.monitor.Diameters method)

 	(f5.bigip.ltm.monitor.Dns method)

 	(f5.bigip.ltm.monitor.Dns_s method)

 	(f5.bigip.ltm.monitor.External method)

 	(f5.bigip.ltm.monitor.Externals method)

 	(f5.bigip.ltm.monitor.Firepass method)

 	(f5.bigip.ltm.monitor.Firepass_s method)

 	(f5.bigip.ltm.monitor.Ftp method)

 	(f5.bigip.ltm.monitor.Ftps method)

 	(f5.bigip.ltm.monitor.Gateway_Icmp method)

 	(f5.bigip.ltm.monitor.Gateway_Icmps method)

 	(f5.bigip.ltm.monitor.Http method)

 	(f5.bigip.ltm.monitor.HttpS method)

 	(f5.bigip.ltm.monitor.Https method)

 	(f5.bigip.ltm.monitor.Https_s method)

 	(f5.bigip.ltm.monitor.Icmp method)

 	(f5.bigip.ltm.monitor.Icmps method)

 	(f5.bigip.ltm.monitor.Imap method)

 	(f5.bigip.ltm.monitor.Imaps method)

 	(f5.bigip.ltm.monitor.Inband method)

 	(f5.bigip.ltm.monitor.Inbands method)

 	(f5.bigip.ltm.monitor.Ldap method)

 	(f5.bigip.ltm.monitor.Ldaps method)

 	(f5.bigip.ltm.monitor.Module_Score method)

 	(f5.bigip.ltm.monitor.Module_Scores method)

 	(f5.bigip.ltm.monitor.Mssql method)

 	(f5.bigip.ltm.monitor.Mssqls method)

 	(f5.bigip.ltm.monitor.Mysql method)

 	(f5.bigip.ltm.monitor.Mysqls method)

 	(f5.bigip.ltm.monitor.NONE method)

 	(f5.bigip.ltm.monitor.Nntp method)

 	(f5.bigip.ltm.monitor.Nntps method)

 	(f5.bigip.ltm.monitor.Nones method)

 	(f5.bigip.ltm.monitor.Oracle method)

 	(f5.bigip.ltm.monitor.Oracles method)

 	(f5.bigip.ltm.monitor.Pop3 method)

 	(f5.bigip.ltm.monitor.Pop3s method)

 	(f5.bigip.ltm.monitor.Postgresql method)

 	(f5.bigip.ltm.monitor.Postgresqls method)

 	(f5.bigip.ltm.monitor.Radius method)

 	(f5.bigip.ltm.monitor.Radius_Accounting method)

 	(f5.bigip.ltm.monitor.Radius_Accountings method)

 	(f5.bigip.ltm.monitor.Radius_s method)

 	(f5.bigip.ltm.monitor.Real_Server method)

 	(f5.bigip.ltm.monitor.Real_Servers method)

 	(f5.bigip.ltm.monitor.Rpc method)

 	(f5.bigip.ltm.monitor.Rpcs method)

 	(f5.bigip.ltm.monitor.Sasp method)

 	(f5.bigip.ltm.monitor.Sasps method)

 	(f5.bigip.ltm.monitor.Scripted method)

 	(f5.bigip.ltm.monitor.Scripteds method)

 	(f5.bigip.ltm.monitor.Sip method)

 	(f5.bigip.ltm.monitor.Sips method)

 	(f5.bigip.ltm.monitor.Smb method)

 	(f5.bigip.ltm.monitor.Smbs method)

 	(f5.bigip.ltm.monitor.Smtp method)

 	(f5.bigip.ltm.monitor.Smtps method)

 	(f5.bigip.ltm.monitor.Snmp_Dca method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Bases method)

 	(f5.bigip.ltm.monitor.Snmp_Dcas method)

 	(f5.bigip.ltm.monitor.Soap method)

 	(f5.bigip.ltm.monitor.Soaps method)

 	(f5.bigip.ltm.monitor.Tcp method)

 	(f5.bigip.ltm.monitor.Tcp_Echo method)

 	(f5.bigip.ltm.monitor.Tcp_Echos method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Opens method)

 	(f5.bigip.ltm.monitor.Tcps method)

 	(f5.bigip.ltm.monitor.Udp method)

 	(f5.bigip.ltm.monitor.Udps method)

 	(f5.bigip.ltm.monitor.Virtual_Location method)

 	(f5.bigip.ltm.monitor.Virtual_Locations method)

 	(f5.bigip.ltm.monitor.Wap method)

 	(f5.bigip.ltm.monitor.Waps method)

 	(f5.bigip.ltm.monitor.Wmi method)

 	(f5.bigip.ltm.monitor.Wmis method)

 	(f5.bigip.ltm.nat.Nat method)

 	(f5.bigip.ltm.nat.Nats method)

 	(f5.bigip.ltm.node.Node method)

 	(f5.bigip.ltm.node.Nodes method)

 	(f5.bigip.ltm.policy.Actions method)

 	(f5.bigip.ltm.policy.Actions_s method)

 	(f5.bigip.ltm.policy.Conditions method)

 	(f5.bigip.ltm.policy.Conditions_s method)

 	(f5.bigip.ltm.policy.Policy method)

 	(f5.bigip.ltm.policy.Policys method)

 	(f5.bigip.ltm.policy.Rules method)

 	(f5.bigip.ltm.policy.Rules_s method)

 	(f5.bigip.ltm.pool.Members method)

 	(f5.bigip.ltm.pool.Members_s method)

 	(f5.bigip.ltm.pool.Pool method)

 	(f5.bigip.ltm.pool.Pools method)

 	(f5.bigip.ltm.rule.Rule method)

 	(f5.bigip.ltm.rule.Rules method)

 	(f5.bigip.ltm.snat.Snat method)

 	(f5.bigip.ltm.snat.Snats method)

 	(f5.bigip.ltm.virtual.Virtual method)

 	(f5.bigip.ltm.virtual.Virtuals method)

 	(f5.bigip.net.arp.Arp method)

 	(f5.bigip.net.arp.Arps method)

 	(f5.bigip.net.fdb.Fdbs method)

 	(f5.bigip.net.fdb.Tunnel method)

 	(f5.bigip.net.fdb.Tunnels method)

 	(f5.bigip.net.fdb.Vlans method)

 	(f5.bigip.net.interface.Interface method)

 	(f5.bigip.net.interface.Interfaces method)

 	(f5.bigip.net.route.Route method)

 	(f5.bigip.net.route.Routes method)

 	(f5.bigip.net.route_domain.Route_Domain method)

 	(f5.bigip.net.route_domain.Route_Domains method)

 	(f5.bigip.net.selfip.Selfip method)

 	(f5.bigip.net.selfip.Selfips method)

 	(f5.bigip.net.tunnels.Gre method)

 	(f5.bigip.net.tunnels.Gres method)

 	(f5.bigip.net.tunnels.Tunnel method)

 	(f5.bigip.net.tunnels.Tunnels method)

 	(f5.bigip.net.tunnels.Tunnels_s method)

 	(f5.bigip.net.tunnels.Vxlan method)

 	(f5.bigip.net.tunnels.Vxlans method)

 	(f5.bigip.net.vlan.Interfaces method)

 	(f5.bigip.net.vlan.Interfaces_s method)

 	(f5.bigip.net.vlan.Vlan method)

 	(f5.bigip.net.vlan.Vlans method)

 	(f5.bigip.resource.Collection method)

 	(f5.bigip.resource.OrganizingCollection method)

 	(f5.bigip.resource.Resource method)

 	(f5.bigip.resource.ResourceBase method)

 	(f5.bigip.sys.application.Aplscript method)

 	(f5.bigip.sys.application.Aplscripts method)

 	(f5.bigip.sys.application.Applications method)

 	(f5.bigip.sys.application.Customstat method)

 	(f5.bigip.sys.application.Customstats method)

 	(f5.bigip.sys.application.Service method)

 	(f5.bigip.sys.application.Services method)

 	(f5.bigip.sys.application.Template method)

 	(f5.bigip.sys.application.Templates method)

 	(f5.bigip.sys.db.Db method)

 	(f5.bigip.sys.db.Dbs method)

 	(f5.bigip.sys.failover.Failover method)

 	(f5.bigip.sys.folder.Folders method)

 	(f5.bigip.sys.global_settings.Global_Settings method)

 	(f5.bigip.sys.ntp.Ntp method)

 	(f5.bigip.sys.ntp.Restrict method)

 	(f5.bigip.sys.ntp.Restricts method)

 	(f5.bigip.sys.performance.All_Stats method)

 	(f5.bigip.sys.performance.Performance method)

 	Resource (class in f5.bigip.resource)

 	ResourceBase (class in f5.bigip.resource)

 	Restrict (class in f5.bigip.sys.ntp)

 	

 	Restricts (class in f5.bigip.sys.ntp)

 	ROClient (class in f5.bigip.pycontrol.pycontrol)

 	Route (class in f5.bigip.net.route)

 	Route_Domain (class in f5.bigip.net.route_domain)

 	Route_Domains (class in f5.bigip.net.route_domain)

 	Routes (class in f5.bigip.net.route)

 	Rpc (class in f5.bigip.ltm.monitor)

 	Rpcs (class in f5.bigip.ltm.monitor)

 	Rule (class in f5.bigip.ltm.rule)

 	Rules (class in f5.bigip.ltm.policy)

 	

 	(class in f5.bigip.ltm.rule)

 	Rules_s (class in f5.bigip.ltm.policy)

S

 	

 	Sasp (class in f5.bigip.ltm.monitor)

 	Sasps (class in f5.bigip.ltm.monitor)

 	Scripted (class in f5.bigip.ltm.monitor)

 	Scripteds (class in f5.bigip.ltm.monitor)

 	section_map (f5.common.iapp_parser.IappParser attribute)

 	sections_not_required (f5.common.iapp_parser.IappParser attribute)

 	Selfip (class in f5.bigip.net.selfip)

 	Selfips (class in f5.bigip.net.selfip)

 	send() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	Service (class in f5.bigip.sys.application)

 	Services (class in f5.bigip.sys.application)

 	set_options() (f5.bigip.pycontrol.pycontrol.ROClient method)

 	set_sessionid() (f5.bigip.pycontrol.pycontrol.BIGIP static method)

 	set_timeout() (f5.bigip.pycontrol.pycontrol.BIGIP method)

 	

 	Sip (class in f5.bigip.ltm.monitor)

 	Sips (class in f5.bigip.ltm.monitor)

 	Smb (class in f5.bigip.ltm.monitor)

 	Smbs (class in f5.bigip.ltm.monitor)

 	Smtp (class in f5.bigip.ltm.monitor)

 	Smtps (class in f5.bigip.ltm.monitor)

 	Snat (class in f5.bigip.ltm.snat)

 	Snats (class in f5.bigip.ltm.snat)

 	Snmp_Dca (class in f5.bigip.ltm.monitor)

 	Snmp_Dca_Base (class in f5.bigip.ltm.monitor)

 	Snmp_Dca_Bases (class in f5.bigip.ltm.monitor)

 	Snmp_Dcas (class in f5.bigip.ltm.monitor)

 	Soap (class in f5.bigip.ltm.monitor)

 	Soaps (class in f5.bigip.ltm.monitor)

T

 	

 	tcl_list_for_attr_re (f5.common.iapp_parser.IappParser attribute)

 	tcl_list_for_section_re (f5.common.iapp_parser.IappParser attribute)

 	tcl_list_patterns (f5.common.iapp_parser.IappParser attribute)

 	Tcp (class in f5.bigip.ltm.monitor)

 	Tcp_Echo (class in f5.bigip.ltm.monitor)

 	Tcp_Echos (class in f5.bigip.ltm.monitor)

 	Tcp_Half_Open (class in f5.bigip.ltm.monitor)

 	Tcp_Half_Opens (class in f5.bigip.ltm.monitor)

 	Tcps (class in f5.bigip.ltm.monitor)

 	Template (class in f5.bigip.sys.application)

 	

 	template_attrs (f5.common.iapp_parser.IappParser attribute)

 	template_sections (f5.common.iapp_parser.IappParser attribute)

 	Templates (class in f5.bigip.sys.application)

 	ToDictMixin (class in f5.bigip.mixins)

 	toggle_standby() (f5.bigip.sys.failover.Failover method)

 	Traffic_Group (class in f5.bigip.cm.traffic_group)

 	Traffic_Groups (class in f5.bigip.cm.traffic_group)

 	Tunnel (class in f5.bigip.net.fdb)

 	

 	(class in f5.bigip.net.tunnels)

 	Tunnels (class in f5.bigip.net.fdb)

 	

 	(class in f5.bigip.net.tunnels)

 	Tunnels_s (class in f5.bigip.net.tunnels)

U

 	

 	u2handlers() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	u2open() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	u2opener() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	u2ver() (f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport method)

 	Udp (class in f5.bigip.ltm.monitor)

 	Udps (class in f5.bigip.ltm.monitor)

 	

 	UnnamedResourceMixin (class in f5.bigip.mixins)

 	UnregisteredKind

 	UnsupportedOperation

 	update() (f5.bigip.BigIP method)

 	

 	(f5.bigip.cm.Cm method)

 	(f5.bigip.cm.device.Device method)

 	(f5.bigip.cm.device.Devices method)

 	(f5.bigip.cm.device_group.Device_Group method)

 	(f5.bigip.cm.device_group.Device_Groups method)

 	(f5.bigip.cm.device_group.Devices method)

 	(f5.bigip.cm.device_group.Devices_s method)

 	(f5.bigip.cm.traffic_group.Traffic_Group method)

 	(f5.bigip.cm.traffic_group.Traffic_Groups method)

 	(f5.bigip.ltm.Ltm method)

 	(f5.bigip.ltm.monitor.Diameter method)

 	(f5.bigip.ltm.monitor.Diameters method)

 	(f5.bigip.ltm.monitor.Dns method)

 	(f5.bigip.ltm.monitor.Dns_s method)

 	(f5.bigip.ltm.monitor.External method)

 	(f5.bigip.ltm.monitor.Externals method)

 	(f5.bigip.ltm.monitor.Firepass method)

 	(f5.bigip.ltm.monitor.Firepass_s method)

 	(f5.bigip.ltm.monitor.Ftp method)

 	(f5.bigip.ltm.monitor.Ftps method)

 	(f5.bigip.ltm.monitor.Gateway_Icmp method)

 	(f5.bigip.ltm.monitor.Gateway_Icmps method)

 	(f5.bigip.ltm.monitor.Http method)

 	(f5.bigip.ltm.monitor.HttpS method)

 	(f5.bigip.ltm.monitor.Https method)

 	(f5.bigip.ltm.monitor.Https_s method)

 	(f5.bigip.ltm.monitor.Icmp method)

 	(f5.bigip.ltm.monitor.Icmps method)

 	(f5.bigip.ltm.monitor.Imap method)

 	(f5.bigip.ltm.monitor.Imaps method)

 	(f5.bigip.ltm.monitor.Inband method)

 	(f5.bigip.ltm.monitor.Inbands method)

 	(f5.bigip.ltm.monitor.Ldap method)

 	(f5.bigip.ltm.monitor.Ldaps method)

 	(f5.bigip.ltm.monitor.Module_Score method)

 	(f5.bigip.ltm.monitor.Module_Scores method)

 	(f5.bigip.ltm.monitor.Mssql method)

 	(f5.bigip.ltm.monitor.Mssqls method)

 	(f5.bigip.ltm.monitor.Mysql method)

 	(f5.bigip.ltm.monitor.Mysqls method)

 	(f5.bigip.ltm.monitor.NONE method)

 	(f5.bigip.ltm.monitor.Nntp method)

 	(f5.bigip.ltm.monitor.Nntps method)

 	(f5.bigip.ltm.monitor.Nones method)

 	(f5.bigip.ltm.monitor.Oracle method)

 	(f5.bigip.ltm.monitor.Oracles method)

 	(f5.bigip.ltm.monitor.Pop3 method)

 	(f5.bigip.ltm.monitor.Pop3s method)

 	(f5.bigip.ltm.monitor.Postgresql method)

 	(f5.bigip.ltm.monitor.Postgresqls method)

 	(f5.bigip.ltm.monitor.Radius method)

 	(f5.bigip.ltm.monitor.Radius_Accounting method)

 	(f5.bigip.ltm.monitor.Radius_Accountings method)

 	(f5.bigip.ltm.monitor.Radius_s method)

 	(f5.bigip.ltm.monitor.Real_Server method)

 	(f5.bigip.ltm.monitor.Real_Servers method)

 	(f5.bigip.ltm.monitor.Rpc method)

 	(f5.bigip.ltm.monitor.Rpcs method)

 	(f5.bigip.ltm.monitor.Sasp method)

 	(f5.bigip.ltm.monitor.Sasps method)

 	(f5.bigip.ltm.monitor.Scripted method)

 	(f5.bigip.ltm.monitor.Scripteds method)

 	(f5.bigip.ltm.monitor.Sip method)

 	(f5.bigip.ltm.monitor.Sips method)

 	(f5.bigip.ltm.monitor.Smb method)

 	(f5.bigip.ltm.monitor.Smbs method)

 	(f5.bigip.ltm.monitor.Smtp method)

 	(f5.bigip.ltm.monitor.Smtps method)

 	(f5.bigip.ltm.monitor.Snmp_Dca method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Base method)

 	(f5.bigip.ltm.monitor.Snmp_Dca_Bases method)

 	(f5.bigip.ltm.monitor.Snmp_Dcas method)

 	(f5.bigip.ltm.monitor.Soap method)

 	(f5.bigip.ltm.monitor.Soaps method)

 	(f5.bigip.ltm.monitor.Tcp method)

 	(f5.bigip.ltm.monitor.Tcp_Echo method)

 	(f5.bigip.ltm.monitor.Tcp_Echos method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Open method)

 	(f5.bigip.ltm.monitor.Tcp_Half_Opens method)

 	(f5.bigip.ltm.monitor.Tcps method)

 	(f5.bigip.ltm.monitor.Udp method)

 	(f5.bigip.ltm.monitor.Udps method)

 	(f5.bigip.ltm.monitor.Virtual_Location method)

 	(f5.bigip.ltm.monitor.Virtual_Locations method)

 	(f5.bigip.ltm.monitor.Wap method)

 	(f5.bigip.ltm.monitor.Waps method)

 	(f5.bigip.ltm.monitor.Wmi method)

 	(f5.bigip.ltm.monitor.Wmis method)

 	(f5.bigip.ltm.nat.Nats method)

 	(f5.bigip.ltm.node.Node method)

 	(f5.bigip.ltm.node.Nodes method)

 	(f5.bigip.ltm.policy.Actions method)

 	(f5.bigip.ltm.policy.Actions_s method)

 	(f5.bigip.ltm.policy.Conditions method)

 	(f5.bigip.ltm.policy.Conditions_s method)

 	(f5.bigip.ltm.policy.Policy method)

 	(f5.bigip.ltm.policy.Policys method)

 	(f5.bigip.ltm.policy.Rules method)

 	(f5.bigip.ltm.policy.Rules_s method)

 	(f5.bigip.ltm.pool.Members method)

 	(f5.bigip.ltm.pool.Members_s method)

 	(f5.bigip.ltm.pool.Pool method)

 	(f5.bigip.ltm.pool.Pools method)

 	(f5.bigip.ltm.rule.Rule method)

 	(f5.bigip.ltm.rule.Rules method)

 	(f5.bigip.ltm.snat.Snat method)

 	(f5.bigip.ltm.snat.Snats method)

 	(f5.bigip.ltm.virtual.Virtual method)

 	(f5.bigip.ltm.virtual.Virtuals method)

 	(f5.bigip.net.arp.Arp method)

 	(f5.bigip.net.arp.Arps method)

 	(f5.bigip.net.fdb.Fdbs method)

 	(f5.bigip.net.fdb.Tunnel method)

 	(f5.bigip.net.fdb.Tunnels method)

 	(f5.bigip.net.fdb.Vlans method)

 	(f5.bigip.net.interface.Interface method)

 	(f5.bigip.net.interface.Interfaces method)

 	(f5.bigip.net.route.Route method)

 	(f5.bigip.net.route.Routes method)

 	(f5.bigip.net.route_domain.Route_Domain method)

 	(f5.bigip.net.route_domain.Route_Domains method)

 	(f5.bigip.net.selfip.Selfip method)

 	(f5.bigip.net.selfip.Selfips method)

 	(f5.bigip.net.tunnels.Gre method)

 	(f5.bigip.net.tunnels.Gres method)

 	(f5.bigip.net.tunnels.Tunnel method)

 	(f5.bigip.net.tunnels.Tunnels method)

 	(f5.bigip.net.tunnels.Tunnels_s method)

 	(f5.bigip.net.tunnels.Vxlan method)

 	(f5.bigip.net.tunnels.Vxlans method)

 	(f5.bigip.net.vlan.Interfaces method)

 	(f5.bigip.net.vlan.Interfaces_s method)

 	(f5.bigip.net.vlan.Vlan method)

 	(f5.bigip.net.vlan.Vlans method)

 	(f5.bigip.resource.Collection method)

 	(f5.bigip.resource.OrganizingCollection method)

 	(f5.bigip.resource.Resource method)

 	(f5.bigip.resource.ResourceBase method)

 	(f5.bigip.sys.application.Aplscript method)

 	(f5.bigip.sys.application.Aplscripts method)

 	(f5.bigip.sys.application.Applications method)

 	(f5.bigip.sys.application.Customstat method)

 	(f5.bigip.sys.application.Customstats method)

 	(f5.bigip.sys.application.Service method)

 	(f5.bigip.sys.application.Services method)

 	(f5.bigip.sys.application.Template method)

 	(f5.bigip.sys.application.Templates method)

 	(f5.bigip.sys.db.Db method)

 	(f5.bigip.sys.db.Dbs method)

 	(f5.bigip.sys.failover.Failover method)

 	(f5.bigip.sys.folder.Folders method)

 	(f5.bigip.sys.global_settings.Global_Settings method)

 	(f5.bigip.sys.ntp.Ntp method)

 	(f5.bigip.sys.ntp.Restrict method)

 	(f5.bigip.sys.ntp.Restricts method)

 	(f5.bigip.sys.performance.All_Stats method)

 	(f5.bigip.sys.performance.Performance method)

 	URICreationCollision

V

 	

 	Virtual (class in f5.bigip.ltm.virtual)

 	Virtual_Location (class in f5.bigip.ltm.monitor)

 	Virtual_Locations (class in f5.bigip.ltm.monitor)

 	Virtuals (class in f5.bigip.ltm.virtual)

 	

 	Vlan (class in f5.bigip.net.vlan)

 	Vlans (class in f5.bigip.net.fdb)

 	

 	(class in f5.bigip.net.vlan)

 	Vxlan (class in f5.bigip.net.tunnels)

 	Vxlans (class in f5.bigip.net.tunnels)

W

 	

 	Wap (class in f5.bigip.ltm.monitor)

 	Waps (class in f5.bigip.ltm.monitor)

 	

 	Wmi (class in f5.bigip.ltm.monitor)

 	Wmis (class in f5.bigip.ltm.monitor)

 Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

 _modules/f5/sdk_exception.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for f5.sdk_exception

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
'''A base exception for all exceptions in this library.'''

[docs]class F5SDKError(Exception):
 '''Import and subclass this exception in all exceptions in this library.'''
 pass

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for f5.bigip

"""Classes and functions for configuring BIG-IP"""
Copyright 2014 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import logging
import os

from f5.bigip.cm import Cm
from f5.bigip.ltm import Ltm
from f5.bigip.net import Net
from f5.bigip.pycontrol import pycontrol as pc
from f5.bigip.resource import OrganizingCollection
from f5.bigip.sys import Sys
from f5.common import constants as const
from icontrol.session import iControlRESTSession

LOG = logging.getLogger(__name__)
allowed_lazy_attributes = [Cm, Ltm, Net, Sys]

def _get_icontrol(hostname, username, password, timeout=None):
 """Initialize iControl interface"""
 # Logger.log(Logger.DEBUG,
 # "Opening iControl connections to %s for interfaces %s"
 # % (self.hostname, self.root_collections))

 if os.path.exists(const.WSDL_CACHE_DIR):
 icontrol = pc.BIGIP(hostname=hostname,
 username=username,
 password=password,
 directory=const.WSDL_CACHE_DIR,
 wsdls=[])
 else:
 icontrol = pc.BIGIP(hostname=hostname,
 username=username,
 password=password,
 fromurl=True,
 wsdls=[])

 if timeout:
 icontrol.set_timeout(timeout)
 else:
 icontrol.set_timeout(const.CONNECTION_TIMEOUT)

 return icontrol

[docs]class BigIP(OrganizingCollection):
 """An interface to a single BIG-IP"""
 def __init__(self, hostname, username, password, **kwargs):
 timeout = kwargs.pop('timeout', 30)
 allowed_lazy_attrs = kwargs.pop('allowed_lazy_attributes',
 allowed_lazy_attributes)
 if kwargs:
 raise TypeError('Unexpected **kwargs: %r' % kwargs)
 # _meta_data variable values
 iCRS = iControlRESTSession(username, password, timeout=timeout)
 icontrol_inst = _get_icontrol(hostname, username, password)
 # define _meta_data
 self._meta_data = {'allowed_lazy_attributes': allowed_lazy_attrs,
 'icontrol': icontrol_inst,
 'hostname': hostname,
 'uri': 'https://%s/mgmt/tm/' % hostname,
 'icr_session': iCRS,
 'device_name': None,
 'local_ip': None,
 'bigip': self}

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/suds/transport/https.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for suds.transport.https

This program is free software; you can redistribute it and/or modify
it under the terms of the (LGPL) GNU Lesser General Public License as
published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library Lesser General Public License for more details at
(http://www.gnu.org/licenses/lgpl.html).
#
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
written by: Jeff Ortel (jortel@redhat.com)

"""
Contains classes for basic HTTP (authenticated) transport implementations.
"""

import urllib2 as u2
from suds.transport import *
from suds.transport.http import HttpTransport
from logging import getLogger

log = getLogger(__name__)

class HttpAuthenticated(HttpTransport):
 """
 Provides basic http authentication that follows the RFC-2617 specification.
 As defined by specifications, credentials are provided to the server
 upon request (HTTP/1.0 401 Authorization Required) by the server only.
 @ivar pm: The password manager.
 @ivar handler: The authentication handler.
 """

 def __init__(self, **kwargs):
 """
 @param kwargs: Keyword arguments.
 - B{proxy} - An http proxy to be specified on requests.
 The proxy is defined as {protocol:proxy,}
 - type: I{dict}
 - default: {}
 - B{timeout} - Set the url open timeout (seconds).
 - type: I{float}
 - default: 90
 - B{username} - The username used for http authentication.
 - type: I{str}
 - default: None
 - B{password} - The password used for http authentication.
 - type: I{str}
 - default: None
 """
 HttpTransport.__init__(self, **kwargs)
 self.pm = u2.HTTPPasswordMgrWithDefaultRealm()

 def open(self, request):
 self.addcredentials(request)
 return HttpTransport.open(self, request)

 def send(self, request):
 self.addcredentials(request)
 return HttpTransport.send(self, request)

 def addcredentials(self, request):
 credentials = self.credentials()
 if not (None in credentials):
 u = credentials[0]
 p = credentials[1]
 self.pm.add_password(None, request.url, u, p)

 def credentials(self):
 return (self.options.username, self.options.password)

 def u2handlers(self):
 handlers = HttpTransport.u2handlers(self)
 handlers.append(u2.HTTPBasicAuthHandler(self.pm))
 return handlers

class WindowsHttpAuthenticated(HttpAuthenticated):
 """
 Provides Windows (NTLM) http authentication.
 @ivar pm: The password manager.
 @ivar handler: The authentication handler.
 @author: Christopher Bess
 """

 def u2handlers(self):
 # try to import ntlm support
 try:
 from ntlm import HTTPNtlmAuthHandler
 except ImportError:
 raise Exception("Cannot import python-ntlm module")
 handlers = HttpTransport.u2handlers(self)
 handlers.append(HTTPNtlmAuthHandler.HTTPNtlmAuthHandler(self.pm))
 return handlers

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/suds/transport/http.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for suds.transport.http

This program is free software; you can redistribute it and/or modify
it under the terms of the (LGPL) GNU Lesser General Public License as
published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library Lesser General Public License for more details at
(http://www.gnu.org/licenses/lgpl.html).
#
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
written by: Jeff Ortel (jortel@redhat.com)

"""
Contains classes for basic HTTP transport implementations.
"""

import urllib2 as u2
import base64
import socket
from suds.transport import *
from suds.properties import Unskin
from urlparse import urlparse
from cookielib import CookieJar
from logging import getLogger

log = getLogger(__name__)

class HttpTransport(Transport):
 """
 HTTP transport using urllib2. Provided basic http transport
 that provides for cookies, proxies but no authentication.
 """

 def __init__(self, **kwargs):
 """
 @param kwargs: Keyword arguments.
 - B{proxy} - An http proxy to be specified on requests.
 The proxy is defined as {protocol:proxy,}
 - type: I{dict}
 - default: {}
 - B{timeout} - Set the url open timeout (seconds).
 - type: I{float}
 - default: 90
 """
 Transport.__init__(self)
 Unskin(self.options).update(kwargs)
 self.cookiejar = CookieJar()
 self.proxy = {}
 self.urlopener = None

 def open(self, request):
 try:
 url = request.url
 log.debug('opening (%s)', url)
 u2request = u2.Request(url)
 self.proxy = self.options.proxy
 return self.u2open(u2request)
 except u2.HTTPError, e:
 raise TransportError(str(e), e.code, e.fp)

 def send(self, request):
 result = None
 url = request.url
 msg = request.message
 headers = request.headers
 try:
 u2request = u2.Request(url, msg, headers)
 self.addcookies(u2request)
 self.proxy = self.options.proxy
 request.headers.update(u2request.headers)
 log.debug('sending:\n%s', request)
 fp = self.u2open(u2request)
 self.getcookies(fp, u2request)
 result = Reply(200, fp.headers.dict, fp.read())
 log.debug('received:\n%s', result)
 except u2.HTTPError, e:
 if e.code in (202,204):
 result = None
 else:
 raise TransportError(e.msg, e.code, e.fp)
 return result

 def addcookies(self, u2request):
 """
 Add cookies in the cookiejar to the request.
 @param u2request: A urllib2 request.
 @rtype: u2request: urllib2.Requet.
 """
 self.cookiejar.add_cookie_header(u2request)

 def getcookies(self, fp, u2request):
 """
 Add cookies in the request to the cookiejar.
 @param u2request: A urllib2 request.
 @rtype: u2request: urllib2.Requet.
 """
 self.cookiejar.extract_cookies(fp, u2request)

 def u2open(self, u2request):
 """
 Open a connection.
 @param u2request: A urllib2 request.
 @type u2request: urllib2.Requet.
 @return: The opened file-like urllib2 object.
 @rtype: fp
 """
 tm = self.options.timeout
 url = self.u2opener()
 if self.u2ver() < 2.6:
 socket.setdefaulttimeout(tm)
 return url.open(u2request)
 else:
 return url.open(u2request, timeout=tm)

 def u2opener(self):
 """
 Create a urllib opener.
 @return: An opener.
 @rtype: I{OpenerDirector}
 """
 if self.urlopener is None:
 return u2.build_opener(*self.u2handlers())
 else:
 return self.urlopener

 def u2handlers(self):
 """
 Get a collection of urllib handlers.
 @return: A list of handlers to be installed in the opener.
 @rtype: [Handler,...]
 """
 handlers = []
 handlers.append(u2.ProxyHandler(self.proxy))
 return handlers

 def u2ver(self):
 """
 Get the major/minor version of the urllib2 lib.
 @return: The urllib2 version.
 @rtype: float
 """
 try:
 part = u2.__version__.split('.', 1)
 n = float('.'.join(part))
 return n
 except Exception, e:
 log.exception(e)
 return 0

 def __deepcopy__(self, memo={}):
 clone = self.__class__()
 p = Unskin(self.options)
 cp = Unskin(clone.options)
 cp.update(p)
 return clone

class HttpAuthenticated(HttpTransport):
 """
 Provides basic http authentication for servers that don't follow
 the specified challenge / response model. This implementation
 appends the I{Authorization} http header with base64 encoded
 credentials on every http request.
 """

 def open(self, request):
 self.addcredentials(request)
 return HttpTransport.open(self, request)

 def send(self, request):
 self.addcredentials(request)
 return HttpTransport.send(self, request)

 def addcredentials(self, request):
 credentials = self.credentials()
 if not (None in credentials):
 encoded = base64.encodestring(':'.join(credentials))
 basic = 'Basic %s' % encoded[:-1]
 request.headers['Authorization'] = basic

 def credentials(self):
 return (self.options.username, self.options.password)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/cm.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.cm

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
"""BigIP cluster module

REST URI
 ``http://localhost/mgmt/tm/cm/``

GUI Path
 ``Device Management``

REST Kind
 ``tm:cm:*``
"""

from f5.bigip.cm.device import Devices
from f5.bigip.cm.device_group import Device_Groups
from f5.bigip.cm.traffic_group import Traffic_Groups
from f5.bigip.resource import OrganizingCollection

[docs]class Cm(OrganizingCollection):
 """BigIP Cluster Organizing Collection."""
 def __init__(self, bigip):
 super(Cm, self).__init__(bigip)
 self._meta_data['allowed_lazy_attributes'] = [
 Devices, Device_Groups, Traffic_Groups,
]

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/mixins.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.mixins

Copyright 2015-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
NOTE: Code taken from Effective Python Item 26

from f5.sdk_exception import F5SDKError

[docs]class ToDictMixin(object):
 """Convert an object's attributes to a dictionary"""
 traversed = {}
 Containers = tuple, list, set, frozenset, dict

 def to_dict(self):
 ToDictMixin.traversed = {}
 return self._to_dict()

 def _to_dict(self):
 result = self._traverse_dict(self.__dict__)
 return result

 def _traverse_dict(self, instance_dict):
 output = {}
 for key, value in instance_dict.items():
 output[key] = self._traverse(key, value)
 return output

 def _traverse(self, key, value):
 if isinstance(value, ToDictMixin.Containers) or\
 hasattr(value, '__dict__'):
 if id(value) in ToDictMixin.traversed:
 return ToDictMixin.traversed[id(value)]
 else:
 ToDictMixin.traversed[id(value)] = ['TraversalRecord', key]
 if isinstance(value, ToDictMixin):
 return value._to_dict()
 elif isinstance(value, dict):
 return self._traverse_dict(value)
 elif isinstance(value, list):
 return [self._traverse(key, item) for item in value]
 elif hasattr(value, '__dict__'):
 return self._traverse_dict(value.__dict__)
 else:
 return value

[docs]class LazyAttributesRequired(F5SDKError):
 """Raised when a object accesses a lazy attribute that is not listed"""
 pass

[docs]class LazyAttributeMixin(object):
 """Allow attributes to be created lazily based on the allowed values"""
 def __getattr__(self, name):
 # ensure this object supports lazy attrs.
 cls_name = self.__class__.__name__
 if '_meta_data' not in self.__dict__:
 error_message = '%r does not have self._meta_data' % cls_name
 raise LazyAttributesRequired(error_message)
 elif 'allowed_lazy_attributes' not in self._meta_data:
 error_message = ('"allowed_lazy_attributes" not in',
 'self._meta_data for class %s' % cls_name)
 raise LazyAttributesRequired(error_message)

 # ensure the requested attr is present
 lower_attr_names =\
 [la.__name__.lower() for la in
 self._meta_data['allowed_lazy_attributes']]
 if name not in lower_attr_names:
 error_message = "'%s' object has no attribute '%s'"\
 % (self.__class__, name)
 raise AttributeError(error_message)

 # Instantiate and potentially set the attr on the object
 # Issue #112 -- Only call setattr here if the lazy attribute
 # is NOT a `Resource`. This should allow for only 1 ltm attribute
 # but many nat attributes just like the BIGIP device.
 for lazy_attribute in self._meta_data['allowed_lazy_attributes']:
 if name == lazy_attribute.__name__.lower():
 attribute = lazy_attribute(self)
 # Use the name of ResourceResource because importing causes
 # a circular reference
 bases = [base.__name__ for base in lazy_attribute.__bases__]
 if 'Resource' not in bases:
 setattr(self, name, attribute)
 return attribute

[docs]class ExclusiveAttributesMixin(object):
 """Overrides ``__setattr__`` to remove exclusive attrs from the object."""
 def __setattr__(self, key, value):
 '''Remove any of the existing exclusive attrs from the object

 Objects attributes can be exclusive for example disable/enable. So
 we need to make sure objects only have one of these attributes at
 at time so that the updates won't fail.
 '''
 if '_meta_data' in self.__dict__:
 # Sometimes this is called prior to full object construction
 for attr_set in self._meta_data['exclusive_attributes']:
 if key in attr_set:
 new_set = set(attr_set) - set([key])
 [self.__dict__.pop(n, '') for n in new_set]
 # Now set the attribute
 super(ExclusiveAttributesMixin, self).__setattr__(key, value)

[docs]class UnnamedResourceMixin(object):
 '''This makes a resource object work if there is no name.

 These objects do not support create or delete and are often found
 as Resources that are under an organizing collection. For example
 the `mgmt/tm/sys/global-settings` is one of these and has a kind of
 `tm:sys:global-settings:global-settingsstate` and the URI does not
 match the kind.
 '''
 class UnsupportedMethod(F5SDKError):
 pass

[docs] def create(self, **kwargs):
 '''Create is not supported for unnamed resources

 :raises: UnsupportedOperation
 '''
 raise self.UnsupportedMethod(
 "%s does not support the create method" % self.__class__.__name__
)

[docs] def delete(self, **kwargs):
 '''Delete is not supported for unnamed resources

 :raises: UnsupportedOperation
 '''
 raise self.UnsupportedMethod(
 "%s does not support the delete method" % self.__class__.__name__
)

 def load(self, **kwargs):
 return self._load(**kwargs)

 def _load(self, **kwargs):
 '''Override _load because Unnamed Resources use their uri directly.

 The Unnamed resources don't have URIs that match their kinds so
 we need to use their URI directly instead of the container's URI
 with name/partitions.
 '''
 self._check_load_parameters(**kwargs)
 kwargs['uri_as_parts'] = True
 read_session = self._meta_data['bigip']._meta_data['icr_session']
 base_uri = self._meta_data['uri']
 response = read_session.get(base_uri, **kwargs)
 self._local_update(response.json())
 return self

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.ltm

Copyright 2015-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Monitor (LTM) module.

REST URI
 ``http://localhost/mgmt/tm/ltm/``

GUI Path
 ``Local Traffic``

REST Kind
 ``tm:ltm:*``
"""

from f5.bigip.ltm.monitor import Monitor
from f5.bigip.ltm.nat import Nats
from f5.bigip.ltm.node import Nodes
from f5.bigip.ltm.policy import Policys
from f5.bigip.ltm.pool import Pools
from f5.bigip.ltm.rule import Rules
from f5.bigip.ltm.snat import Snats
from f5.bigip.ltm.virtual import Virtuals
from f5.bigip.resource import OrganizingCollection

[docs]class Ltm(OrganizingCollection):
 """BigIP Local Traffic Manager (LTM) organizing collection."""
 def __init__(self, bigip):
 super(Ltm, self).__init__(bigip)
 self._meta_data['allowed_lazy_attributes'] = [
 Monitor,
 Nats,
 Nodes,
 Policys,
 Pools,
 Rules,
 Snats,
 Virtuals
]

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

apidoc/f5.bigip.pycontrol.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

f5.bigip.pycontrol package

Subpackages

Submodules

f5.bigip.pycontrol.pycontrol module

		
class f5.bigip.pycontrol.pycontrol.BIGIP(hostname=None, username=None, password=None, wsdls=None, directory=None, fromurl=False, debug=False, proto='https', sessions=False, cache=True, **kwargs)[source]

		Bases: object

Wrap suds client object(s) and create a user-friendly class to use.

		
set_timeout(timeout)[source]

		

		
add_interface(wsdl)[source]

		

		
add_interfaces(wsdls)[source]

		

		
get_sessionid()[source]

		Fetch a session identifier from a v11.x BigIP.

		
static set_sessionid(sessionid, client)[source]

		Sets the session header for a client.

		@sessionid (String) - session_id to add to the

		X-iControl-Session header.

@client - client object.

		
class f5.bigip.pycontrol.pycontrol.ModuleInstance(name)[source]

		Bases: object

An iControl module object to set attributes against.

		
class f5.bigip.pycontrol.pycontrol.InterfaceInstance(name)[source]

		Bases: object

An iControl interface object to set attributes against.

		
class f5.bigip.pycontrol.pycontrol.ROClient(url, **kwargs)[source]

		Bases: suds.client.Client

		
add_prefix(prefix, uri)

		Add I{static} mapping of an XML namespace prefix to a namespace.
This is useful for cases when a wsdl and referenced schemas make heavy
use of namespaces and those namespaces are subject to changed.
@param prefix: An XML namespace prefix.
@type prefix: str
@param uri: An XML namespace URI.
@type uri: str
@raise Exception: when prefix is already mapped.

		
clone()

		Get a shallow clone of this object.
The clone only shares the WSDL. All other attributes are
unique to the cloned object including options.
@return: A shallow clone.
@rtype: L{Client}

		
dict(sobject)

		Convert a sudsobject into a dictionary.
@param sobject: A suds object
@type sobject: L{Object}
@return: A python dictionary containing the

items contained in I{sobject}.

@rtype: dict

		
items(sobject)

		Extract the I{items} from a suds object much like the
items() method works on I{dict}.
@param sobject: A suds object
@type sobject: L{Object}
@return: A list of items contained in I{sobject}.
@rtype: [(key, value),...]

		
last_received()

		Get last received I{soap} message.
@return: The last received I{soap} message.
@rtype: L{Document}

		
last_sent()

		Get last sent I{soap} message.
@return: The last sent I{soap} message.
@rtype: L{Document}

		
metadata(sobject)

		Extract the metadata from a suds object.
@param sobject: A suds object
@type sobject: L{Object}
@return: The object’s metadata
@rtype: L{sudsobject.Metadata}

		
set_options(**kwargs)

		Set options.
@param kwargs: keyword arguments.
@see: L{Options}

		
class f5.bigip.pycontrol.pycontrol.InMemoryCache[source]

		Bases: suds.cache.Cache

In-memory cache.

The contents of the cache is shared between all instances.

		
data = {}

		

		
get(objid)[source]

		

		
getf(objid)[source]

		

		
put(objid, obj)[source]

		

		
putf(objid, fp)[source]

		

		
purge(objid)[source]

		

		
clear()[source]

		

		
class f5.bigip.pycontrol.pycontrol.HTTPSUnVerifiedCertTransport(*args, **kwargs)[source]

		Bases: suds.transport.https.HttpAuthenticated

		
addcookies(u2request)

		Add cookies in the cookiejar to the request.
@param u2request: A urllib2 request.
@rtype: u2request: urllib2.Requet.

		
addcredentials(request)

		

		
credentials()

		

		
getcookies(fp, u2request)

		Add cookies in the request to the cookiejar.
@param u2request: A urllib2 request.
@rtype: u2request: urllib2.Requet.

		
open(request)

		

		
send(request)

		

		
u2open(u2request)

		Open a connection.
@param u2request: A urllib2 request.
@type u2request: urllib2.Requet.
@return: The opened file-like urllib2 object.
@rtype: fp

		
u2opener()

		Create a urllib opener.
@return: An opener.
@rtype: I{OpenerDirector}

		
u2ver()

		Get the major/minor version of the urllib2 lib.
@return: The urllib2 version.
@rtype: float

		
u2handlers()[source]

		

		
f5.bigip.pycontrol.pycontrol.main()[source]

		

Module contents

		
exception f5.bigip.pycontrol.F5Error(e)[source]

		Bases: f5.sdk_exception.F5SDKError

		
args

		

		
message

		

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/resource.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.resource

Copyright 2015-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
"""This module provides classes that specify how RESTful resources are handled.

THE MOST IMPORTANT THING TO KNOW ABOUT THIS API IS THAT YOU CAN DIRECTLY INFER
REST URIs FROM PYTHON EXPRESSIONS, AND VICE VERSA.

Examples:

 * Expression: bigip = BigIP('a', 'b', 'c')
 * URI Returned: https://a/mgmt/tm/

 * Expression: bigip.ltm
 * URI Returned: https://a/mgmt/tm/ltm/

 * Expression: pools1 = bigip.ltm.pools
 * URI Returned: https://a/mgmt/tm/ltm/pool

 * Expression: pool_a = pools1.create(partition="Common", name="foo")
 * URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

There are different types of resources published by the BigIP REST Server, they
are represented by the classes in this module.

We refer to a server-provided resource as a "service". Thus far all URI
referenced resources are "services" in this sense.

We use methods named Create, Refresh, Update, Load, and Delete to manipulate
BigIP device services.

Methods:

 * create -- uses HTTP POST, creates a new resource and with its own URI on
 the device
 * refresh -- uses HTTP GET, obtains the state of a device resource, and sets
 the representing Python Resource Object tracks device state via its attrs
 * update -- uses HTTP PUT, submits a new configuration to the device resource
 and sets the Resource attrs to the state the device reports
 * load -- uses HTTP GET, obtains the state of an existing resource on the
 device and sets the Resource attrs to that state
 * delete -- uses HTTP DELETE, removes the resource from the device, and sets
 self.__dict__ to {'deleted': True}

Available Classes:
 * ResourceBase -- only `refresh` is generally supported in all resource
 types, this class provides `refresh`. ResourceBase objects are usually
 instantiated via setting lazy attributes. ResourceBase provides a
 constructor to match its call in LazyAttributeMixin.__getattr__. The
 expected behavior is that all resource subclasses depend on this
 constructor to correctly set their self._meta_data['uri'].
 All ResourceBase objects (except BigIPs) have a container (BigIPs contain
 themselves). The container is the object the ResourceBase is an
 attribute of.
 * OrganizingCollection -- These resources support lists of "reference"
 "links". These are json blobs without a Python class representation.
 Example URI_path: /mgmt/tm/ltm/
 * Collection -- These resources support lists of ResourceBase Objects.
 Example URI_path: /mgmt/tm/ltm/nat
 * Resource -- These resources are the only resources that support
 `create`, `update`, and `delete` operations. Because they support HTTP
 post (via _create) they uniquely depend on 2 uri's, a uri that supports
 the creating post, and the returned uri of the newly created resource.
 Example URI_path: /mgmt/tm/ltm/nat/~Common~testnat1
"""
import keyword
import re
import tokenize
import urlparse

from f5.bigip.mixins import LazyAttributeMixin
from f5.bigip.mixins import ToDictMixin
from f5.sdk_exception import F5SDKError
from requests.exceptions import HTTPError

class RequestParamKwargCollision(F5SDKError):
 pass

[docs]class KindTypeMismatch(F5SDKError):
 """Raise this when server JSON keys are incorrect for the Resource type."""
 pass

[docs]class DeviceProvidesIncompatibleKey(F5SDKError):
 """Raise this when server JSON keys are incompatible with Python."""
 pass

[docs]class InvalidResource(F5SDKError):
 """Raise this when a caller tries to invoke an unsupported CRUDL op.

 All resources support `refresh` and `raw`.
 Only `Resource`'s support `load`, `create`, `update`, and `delete`.
 """
 pass

[docs]class MissingRequiredCreationParameter(F5SDKError):
 """Various values MUST be provided to create different Resources."""
 pass

[docs]class MissingRequiredReadParameter(F5SDKError):
 """Various values MUST be provided to refresh some Resources."""
 pass

[docs]class UnregisteredKind(F5SDKError):
 """The returned server JSON `kind` key wasn't expected by this Resource."""
 pass

[docs]class GenerationMismatch(F5SDKError):
 """The server reported BigIP is not the expacted value."""
 pass

[docs]class InvalidForceType(ValueError):
 """Must be of type bool."""
 pass

[docs]class URICreationCollision(F5SDKError):
 """self._meta_data['uri'] can only be assigned once. In create or load."""
 pass

[docs]class UnsupportedOperation(F5SDKError):
 """Object does not support the method that was called."""
 pass

[docs]class ResourceBase(LazyAttributeMixin, ToDictMixin):
 """Base class for all BigIP iControl REST API endpoints.

 The BigIP is represented by an object that converts device published uri's
 into Python objects. Each uri maps to a Python object. The mechanism for
 instantiating these objects is the __getattr__ Special Function in the
 LazyAttributeMixin. When a registered attribute is `dot` referenced, on
 the device object (e.g. ``bigip.ltm`` or simply ``bigip``), an appropriate
 object is instantiated and attributed to the referencing object:

 .. code-block:: python

 bigip.ltm = LTM(bigip)
 bigip.ltm.nats
 nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

 This can be shortened to just the last line:

 .. code-block:: python

 nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

 Critically this enforces a convention relating device published uris to
 API objects, in a hierarchy similar to the uri paths. I.E. the uri
 corresponding to a ``Nats`` object is ``mgmt/tm/ltm/nat/``. If you
 query the bigip's uri (e.g. print(bigip._meta_data['uri'])), you'll see
 that it ends in:
 ``/mgmt/tm/``, if you query the ``ltm`` object's uri
 (e.g. print(bigip.ltm._meta_data['uri'])) you'll see it ends in
 ``/mgmt/tm/ltm/``.

 In general the objects build a required `self._meta_data['uri']` attribute
 by:
 1. Inheriting this class.
 2. calling super(Subclass, self).__init__(container)
 3. self.uri = self.container_uri['uri'] + '/' + self.__class__.__name__

 The net result is a succinct mapping between uri's and objects,
 that represents objects in a hierarchical relationship similar to the
 devices uri path hierarchy.
 """
 def __init__(self, container):
 """Call this with containing_object_instance.FOO

 Where FOO is a concrete subclass of this class, ResourceBase. The '.'
 operator passes "FOO" to the __getattr__ method of the
 containing_object_instance which instantiates it as the appropriate
 sub-type of ResourceBase.

 Since all ResourceBases sub-types must support the `refresh` method, it
 is defined here, in the base class.
 NOTE: The BigIP uri 'mgmt/tm/' uniquely passes itself to this
 constructor as the "container".

 :param container: instance is an attribute of a ResourceBase container
 """
 self._meta_data = {'container': container,
 'bigip': container._meta_data['bigip']}

 def _local_update(self, rdict):
 """Call this with a response dictionary to update instance attrs.

 If the response has only valid keys, stash meta_data, replace __dict__,
 and reassign meta_data.

 :param rdict: response attributes derived from server JSON
 """
 sanitized = self._check_keys(rdict)
 temp_meta = self._meta_data
 self.__dict__ = sanitized
 self._meta_data = temp_meta

 def _check_keys(self, rdict):
 """Call this from _local_update to validate response keys

 disallowed server-response json keys:
 1. The string-literal '_meta_data'
 2. strings that are not valid Python 2.7 identifiers
 3. strings that are Python keywords
 4. strings beginning with '__'.

 :param rdict: from response.json()
 :raises: DeviceProvidesIncompatibleKey
 :returns: checked response rdict
 """
 if '_meta_data' in rdict:
 error_message = "Response contains key '_meta_data' which is "\
 "incompatible with this API!!\n Response json: %r" % rdict
 raise DeviceProvidesIncompatibleKey(error_message)
 for x in rdict:
 if not re.match(tokenize.Name, x):
 error_message = "Device provided %r which is disallowed"\
 " because it's not a valid Python 2.7 identifier." % x
 raise DeviceProvidesIncompatibleKey(error_message)
 elif keyword.iskeyword(x):
 error_message = "Device provided %r which is disallowed"\
 " because it's a Python keyword." % x
 raise DeviceProvidesIncompatibleKey(error_message)
 elif x.startswith('__'):
 error_message = "Device provided %r which is disallowed"\
 ", it mangles into a Python non-public attribute." % x
 raise DeviceProvidesIncompatibleKey(error_message)
 return rdict

 def _handle_requests_params(self, kwargs):
 requests_params = kwargs.pop('requests_params', {})
 for param in requests_params:
 if param in kwargs:
 error_message = 'Requests Parameter %r collides with a load'\
 ' parameter of the same name.' % param
 raise RequestParamKwargCollision(error_message)
 return requests_params

 def _refresh(self, **kwargs):
 """wrapped by `refresh` override that in a subclass to customize"""
 requests_params = self._handle_requests_params(kwargs)
 refresh_session = self._meta_data['bigip']._meta_data['icr_session']
 response = refresh_session.get(self._meta_data['uri'],
 **requests_params)
 self._local_update(response.json())

[docs] def refresh(self, **kwargs):
 """Use this to make the device resource be represented by self.

 This method makes an HTTP GET query against the device service.
 This method is run for its side-effects on self.
 If successful the instance attribute __dict__ is replaced
 with the dict representing the device state. To figure out what that
 state is, run a subsequest query of the object like this:
 As with all CURDLE methods use a "requests_params" dict to pass
 parameters to requests.session.HTTPMETHOD. See test_requests_params.py
 for an example.
 >>> resource_obj.refresh()
 >>> print(resource_obj.raw)
 """
 self._refresh(**kwargs)

 def load(self, **kwargs):
 error_message = "Only Resources support 'load'."
 raise InvalidResource(error_message)

[docs] def create(self, **kwargs):
 """Implement this by overriding it in a subclass of `Resource`

 :raises: InvalidResource
 """
 error_message = "Only Resources support 'create'."
 raise InvalidResource(error_message)

[docs] def update(self, **kwargs):
 """Implement this by overriding it in a subclass of `Resource`

 :raises: InvalidResource
 """
 error_message = "Only Resources support 'update'."
 raise InvalidResource(error_message)

[docs] def delete(self, **kwargs):
 """Implement this by overriding it in a subclass of `Resource`

 :raises: InvalidResource
 """
 error_message = "Only Resources support 'delete'."
 raise InvalidResource(error_message)

 @property
 def raw(self):
 """Display the attributes that the current object has and their values.

 :returns: A dictionary of attributes and their values
 """
 return self.__dict__

[docs]class OrganizingCollection(ResourceBase):
 """Base class for objects that collect resources under them.

 ``OrganizingCollection`` objects fulfill the following functions:

 * represent a uri path fragment immediately 'below' /mgmt/tm
 * provide a list of dictionaries that contain uri's to other
 resources on the device.
 """
 def __init__(self, bigip):
 """Call this to construct an OC. It should be an attribute of BigIP.

 :param bigip: all OCs are attributes of a BigIP instance
 """
 super(OrganizingCollection, self).__init__(bigip)
 base_uri = self.__class__.__name__.lower() + '/'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + base_uri

[docs] def get_collection(self, **kwargs):
 """Call to obtain a list of the reference dicts in the instance `items`

 :returns: List of self.items
 """
 self.refresh(**kwargs)
 return self.items

[docs]class Collection(ResourceBase):
 """Base class for objects that collect a list of ``Resources``

 The Collection Resource is responsible for providing a list of Python
 objects, where each object represents a unique URI, the URI contains the
 URI of the Collection at the front of its path, and the 'kind' of the
 URI-associated-JSON has been registered with the attribute registry of the
 Collection subclass.

 .. note::

 Any subclass of this base class must have ``s`` at the end of its name
 unless it ends in ``s`` then it must have ``_s``.

 """
 def __init__(self, container):
 """Call this with the __get_attr__ of a Resource or OC.

 The contained-by-an-OC-or-Resource pattern is observed, and not a
 strictly enforced part of the model.

 URIs are constructed _from_ Collection subclass names. All Collection
 subclass names MUST end in 's' or '_s', to distinguish them from their
 associated Resource (which is always accessible as an attribute of the
 subclass instance.

 :param container: instances of Collection are attributes of container
 """
 super(Collection, self).__init__(container)
 # Handle 'terminal s or _s'
 if self.__class__.__name__.lower()[-2:] == '_s':
 endind = 2
 else:
 endind = 1
 base_uri = self.__class__.__name__.lower()[:-endind] + '/'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + base_uri

[docs] def get_collection(self, **kwargs):
 """Get an iterator of Python ``Resource`` objects that represent URIs.

 The returned objects are Pythonic `Resource`s that map to the most
 recently `refreshed` state of uris-resources published by the device.
 In order to instantiate the correct types, the concrete subclass must
 populate its registry with acceptable types, based on the `kind` field
 returned by the REST server.

 .. note::
 This method implies a single REST transaction with the
 Collection subclass URI.

 :raises: UnregisteredKind
 :returns: list of reference dicts and Python ``Resource`` objects
 """
 list_of_contents = []
 self.refresh(**kwargs)
 if 'items' in self.__dict__:
 for item in self.items:
 # It's possible to have non-"kind" JSON returned. We just
 # append the corresponding dict. PostProcessing is the caller's
 # responsibility.
 if 'kind' not in item:
 list_of_contents.append(item)
 continue
 kind = item['kind']
 if kind in self._meta_data['attribute_registry']:
 # If it has a kind, it must be registered.
 instance =\
 self._meta_data['attribute_registry'][kind](self)
 instance._local_update(item)
 instance._activate_URI(instance.selfLink)
 list_of_contents.append(instance)
 else:
 error_message = '%r is not registered!' % kind
 raise UnregisteredKind(error_message)
 return list_of_contents

[docs]class Resource(ResourceBase):
 """Base class to represent a Configurable Resource on the device.

 .. warning::
 Objects instantiated from subclasses of Resource do NOT contain a URI
 (self._meta_data['uri']) at instantiation!

 Resource objects provide the interface for the Creation of new services on
 the device. Once a new service has been created, (via ``self.create`` or
 ``self.load``), the instance constructs its URI and stores it as
 ``self._meta_data['uri']``.

 It is an error to attempt to call
 :meth:`~f5.bigip.resource.Resource.create` or
 :meth:`~f5.bigip.resource.Resource.load` on an instance more than once.
 ``self._meta_data['uri']`` MUST not be changed after creation or load.

 .. note::
 creation query args, and creation hash fragments are stored as
 separate _meta_data values.

 By "Configurable" we mean that submitting JSON via the PUT method to the
 URI managed by subclasses of Resource, changes the state of the
 corresponding service on the device.

 It also means that the URI supports `DELETE`.
 """
 def __init__(self, container):
 """Call to create a client side object to represent a service URI.

 Call _create or _load for a Resource resource to have a
 self._meta_data['uri']!
 """
 super(Resource, self).__init__(container)
 # Creation fails without these.
 self._meta_data['required_creation_parameters'] = set(('name',))
 # Refresh fails without these.
 self._meta_data['required_refresh_parameters'] = set(('name',))
 # You can't have more than one of the attrs in any of these sets.
 self._meta_data['exclusive_attributes'] = []
 # You can't set these attributes, only 'read' them.
 self._meta_data['read_only_attributes'] = []

 def _activate_URI(self, selfLinkuri):
 """Call this with a selfLink, after it's returned in _create or _load.

 Each instance is tightly bound to a particular service URI. When that
 service is created by this library, or loaded from the device, the URI
 is set to self._meta_data['uri']. This operation can only occur once,
 any subsequent attempt to manipulate self._meta_data['uri'] is
 probably a mistake.

 self.selfLink references a value that is returned as a JSON value from
 the device. This value contains "localhost" as the domain or the uri.
 "localhost" is only conceivably useful if the client library is run on
 the device itself, so it is replaced with the domain this API used to
 communicate with the device.

 self.selfLink correctly contains a complete uri, that is only _now_
 (post create or load) available to self.

 Now that the complete URI is available to self, it is now possible to
 reference subcollections, as attributes of self!
 e.g. a resource with a uri path like:
 "/mgmt/tm/ltm/pool/~Common~pool_collection1/members"
 The mechanism used to enable this change is to set
 the `allowed_lazy_attributes` _meta_data key to hold values of the
 `attribute_registry` _meta_data key.

 Finally we stash the corrected `uri`, returned hash_fragment, query
 args, and of course allowed_lazy_attributes in _meta_data.

 :param selfLinkuri: the server provided selfLink (contains localhost)
 :raises: URICreationCollision
 """
 # hostname local alias
 hostname = self._meta_data['bigip']._meta_data['hostname']

 # attrs local alias
 attribute_reg = self._meta_data.get('attribute_registry', {})
 attrs = attribute_reg.values()

 (scheme, domain, path, qarg, frag) = urlparse.urlsplit(selfLinkuri)
 path_uri = urlparse.urlunsplit((scheme, hostname, path, '', ''))
 if not path_uri.endswith('/'):
 path_uri = path_uri + '/'
 qargs = urlparse.parse_qs(qarg)
 self._meta_data.update({'uri': path_uri,
 'creation_uri_qargs': qargs,
 'creation_uri_frag': frag,
 'allowed_lazy_attributes': attrs})

 def _create(self, **kwargs):
 """wrapped by `create` override that in subclasses to customize"""
 if 'uri' in self._meta_data:
 error = "There was an attempt to assign a new uri to this "\
 "resource, the _meta_data['uri'] is %s and it should"\
 " not be changed." % (self._meta_data['uri'])
 raise URICreationCollision(error)
 requests_params = self._handle_requests_params(kwargs)
 key_set = set(kwargs.keys())
 required_minus_received =\
 self._meta_data['required_creation_parameters'] - key_set
 if required_minus_received != set():
 error_message = 'Missing required params: %r'\
 % required_minus_received
 raise MissingRequiredCreationParameter(error_message)

 # Make convenience variable with short names for this method.
 _create_uri = self._meta_data['container']._meta_data['uri']
 session = self._meta_data['bigip']._meta_data['icr_session']

 # Invoke the REST operation on the device.
 response = session.post(_create_uri, json=kwargs, **requests_params)

 # Post-process the response
 self._local_update(response.json())

 if self.kind != self._meta_data['required_json_kind']:
 error_message = "For instances of type '%r' the corresponding"\
 " kind must be '%r' but creation returned JSON with kind: %r"\
 % (self.__class__.__name__,
 self._meta_data['required_json_kind'],
 self.kind)
 raise KindTypeMismatch(error_message)

 # Update the object to have the correct functional uri.
 self._activate_URI(self.selfLink)
 return self

[docs] def create(self, **kwargs):
 """Create the resource on the BigIP.

 Uses HTTP POST to the `collection` URI to create a resource associated
 with a new unique URI on the device.

 ..
 Subclasses can customize this functionality by defining a `create`
 method that wraps and calls this method with appropriate arguments.

 Note this is the one of two fundamental Resource operations that
 returns a different uri (in the returned object) than the uri the
 operation was called on. The returned uri can be accessed as
 Object.selfLink, the actual uri used by REST operations on the
 object is Object._meta_data['uri']. The _meta_data['uri'] is the
 same as Object.selfLink with the substring 'localhost' replaced
 with the value of
 Object._meta_data['bigip']._meta_data['hostname'], and without
 query args, or hash fragments.

 :param kwargs: All the key-values needed to create the resource
 NOTE: If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.post method where it will
 be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
 :returns: ``self`` - A python object that represents the object's
 configuration and state on the BigIP.

 """
 self._create(**kwargs)
 return self

 def _load(self, **kwargs):
 """wrapped with load, override that in a subclass to customize"""
 if 'uri' in self._meta_data:
 error = "There was an attempt to assign a new uri to this "\
 "resource, the _meta_data['uri'] is %s and it should"\
 " not be changed." % (self._meta_data['uri'])
 raise URICreationCollision(error)
 requests_params = self._handle_requests_params(kwargs)
 self._check_load_parameters(**kwargs)
 kwargs['uri_as_parts'] = True
 refresh_session = self._meta_data['bigip']._meta_data['icr_session']
 base_uri = self._meta_data['container']._meta_data['uri']
 kwargs.update(requests_params)
 response = refresh_session.get(base_uri, **kwargs)
 self._local_update(response.json())
 self._activate_URI(self.selfLink)
 return self

[docs] def load(self, **kwargs):
 """Load an already configured service into this instance.

 This method uses HTTP GET to obtain a resource from the BigIP.

 ..
 The URI of the target service is constructed from the instance's
 container and **kwargs.
 kwargs typically requires the keys "name" and "partition".
 this may, or may not, be true for a specific service.

 :param kwargs: typically contains "name" and "partition"
 NOTE: If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.get method where it will
 be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
 :returns: a Resource Instance (with a populated _meta_data['uri'])
 """
 self._load(**kwargs)
 return self

 def _check_load_parameters(self, **kwargs):
 '''Params given to load should at least satisfy required params.

 :params: kwargs
 :raises: MissingRequiredReadParameter
 '''
 key_set = set(kwargs.keys())
 required_minus_received =\
 self._meta_data['required_refresh_parameters'] - key_set
 if required_minus_received != set():
 error_message = 'Missing required params: %r'\
 % required_minus_received
 raise MissingRequiredReadParameter(error_message)

 def _update(self, **kwargs):
 """wrapped with update, override that in a subclass to customize"""
 requests_params = self._handle_requests_params(kwargs)
 update_uri = self._meta_data['uri']
 session = self._meta_data['bigip']._meta_data['icr_session']
 read_only = self._meta_data.get('read_only_attributes', [])

 # Get the current state of the object on BigIP and check the generation
 # Use pop here because we don't want force in the data_dict
 force = self._check_force_arg(kwargs.pop('force', False))
 if not force:
 self._check_generation()

 # Save the meta data so we can add it back into self after we
 # load the new object.
 temp_meta = self.__dict__.pop('_meta_data')

 # Need to remove any of the Collection objects from self.__dict__
 # because these are subCollections and _meta_data and
 # other non-BIGIP attrs are not removed from the subCollections
 # See issue #146 for details
 for key, value in self.__dict__.items():
 if isinstance(value, Collection):
 self.__dict__.pop(key, '')
 data_dict = self.to_dict()

 # Remove any read-only attributes from our data_dict before we update
 # the data dict with the attributes. If they pass in read-only attrs
 # in the method call we are going to let BIGIP let them know about it
 # when it fails
 for attr in read_only:
 data_dict.pop(attr, '')

 data_dict.update(kwargs)
 response = session.put(update_uri, json=data_dict, **requests_params)
 self._meta_data = temp_meta
 self._local_update(response.json())

[docs] def update(self, **kwargs):
 """Update the configuration of the resource on the BigIP.

 This method uses HTTP PUT alter the resource state on the BigIP.

 The attributes of the instance will be packaged as a dictionary. That
 dictionary will be updated with kwargs. It is then submitted as JSON
 to the device.

 Various edge cases are handled:
 * read-only attributes that are unchangeable are removed

 :param kwargs: keys and associated values to alter on the device
 NOTE: If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.put method where it will
 be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!

 """
 # Need to implement checking for valid params here.
 self._update(**kwargs)

 def _delete(self, **kwargs):
 """wrapped with delete, override that in a subclass to customize """
 requests_params = self._handle_requests_params(kwargs)
 delete_uri = self._meta_data['uri']
 session = self._meta_data['bigip']._meta_data['icr_session']

 # Check the generation for match before delete
 force = self._check_force_arg(kwargs.pop('force', True))
 if not force:
 self._check_generation()

 response = session.delete(delete_uri, **requests_params)
 if response.status_code == 200:
 self.__dict__ = {'deleted': True}

[docs] def delete(self, **kwargs):
 """Delete the resource on the BigIP.

 Uses HTTP DELETE to delete the resource on the BigIP.

 After this method is called, and status_code 200 response is received
 ``instance.__dict__`` is replace with ``{'deleted': True}``

 :param kwargs: The only current use is to pass kwargs to the requests
 API. If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.delete method where it
 will be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
 """
 # Need to implement checking for ? here.
 self._delete(**kwargs)

 # Need to implement correct teardown here.

[docs] def exists(self, **kwargs):
 """Check for the existence of the named object on the BigIP

 Sends an HTTP GET to the URI of the named object and if it fails with
 a :exc:~requests.HTTPError` exception it checks the exception for
 status code of 404 and returns :obj:`False` in that case.

 If the GET is successful it returns :obj:`True`.

 For any other errors are raised as-is.

 :param kwargs: Keyword arguments required to get objects
 NOTE: If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.get method where it will
 be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
 :returns: bool -- The objects exists on BigIP or not.
 :raises: :exc:`requests.HTTPError`, Any HTTP error that was not status
 code 404.
 """
 requests_params = self._handle_requests_params(kwargs)
 self._check_load_parameters(**kwargs)
 kwargs['uri_as_parts'] = True
 session = self._meta_data['bigip']._meta_data['icr_session']
 base_uri = self._meta_data['container']._meta_data['uri']
 kwargs.update(requests_params)
 try:
 session.get(base_uri, **kwargs)
 except HTTPError as err:
 if err.response.status_code == 404:
 return False
 else:
 raise
 return True

 def _check_force_arg(self, force):
 if not isinstance(force, bool):
 raise InvalidForceType("force parameter must be type bool")
 return force

 def _check_generation(self):
 '''Check that the generation on the BigIP matches the object

 This will do a get to the objects URI and check that the generation
 returned in the JSON matches the one the object currently has. If it
 does not it will raise the `GenerationMismatch` exception.
 '''

 session = self._meta_data['bigip']._meta_data['icr_session']
 response = session.get(self._meta_data['uri'])
 current_gen = response.json().get('generation', None)
 if current_gen is not None and current_gen != self.generation:
 error_message = ("The generation of the object on the BigIP " +
 "(" + str(current_gen) + ")" +
 " does not match the current object" +
 "(" + str(self.generation) + ")")
 raise GenerationMismatch(error_message)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/SDK_plural_note.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

Important

When using the SDK, you’ll notice that collection objects are referenced using the plural version of the Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to the name when referring to the object.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

		LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path f5.bigip.pools.get_collection().

		Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via f5.bigip.net.tunnels_s.get_collection().

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/pycontrol.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.pycontrol

Copyright 2014 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import re
import suds
from xml.sax import SAXParseException

from f5.sdk_exception import F5SDKError
Project info

[docs]class F5Error(F5SDKError):
 def __init__(self, e):
 self.exception = e
 self.msg = str(e)

 if isinstance(e, suds.WebFault):
 try:
 parts = e.fault.faultstring.split('\n')
 # e_source = parts[0].replace("Exception caught in ", "")
 e_type = parts[1].replace("Exception: ", "")
 e_msg = re.sub("\serror_string\s*:\s*", "", parts[4])
 self.msg = "%s: %s" % (e_type, e_msg)
 except IndexError:
 self.msg = e.fault.faultstring
 if isinstance(e, SAXParseException):
 self.msg = "Unexpected server response. %s" % e.message

 def __str__(self):
 return self.msg

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/uri_code_breakdown.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
 |-------|---|----|--------------|-------|-------------|
 OC OC Coll Resource SC SubColl Resrc

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/folder.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.folder

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP system folder (partition) module

REST URI
 ``http://localhost/mgmt/tm/sys/folder``

GUI Path
 ``System --> Users --> Partition List``

REST Kind
 ``tm:sys:folder:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource
from requests.exceptions import HTTPError

[docs]class Folders(Collection):
 """BigIP system folder collection.

 These are what we refer to as ``partition`` in the SDK.
 """
 def __init__(self, sys):
 super(Folders, self).__init__(sys)
 self._meta_data['allowed_lazy_attributes'] = [Folder]
 self._meta_data['attribute_registry'] =\
 {'tm:sys:folder:folderstate': Folder}

class Folder(Resource):
 def __init__(self, folder_s):
 '''BigIP system folder resource.

 Folder objects are the same as the partition so we need to deal with
 them slightly differently than other Resources. For example when
 you refresh/load them you need to use the partition name instead of
 the partition and name because their self link looks something like
 `https://localhost/mgmt/tm/sys/folder/~testfolder`. Notice that there
 is no ~partition~name format for the object.
 '''
 super(Folder, self).__init__(folder_s)
 self._meta_data['required_json_kind'] = 'tm:sys:folder:folderstate'
 # refresh() and load() require partition, not name
 self._meta_data['required_refresh_parameters'] = set()
 self._meta_data['required_creation_parameters'].update(('subPath',))

 def _create_subpath_uri(self, kwargs):
 base_uri = self._meta_data['container']._meta_data['uri']
 name = kwargs.pop('name', '')
 partition = kwargs.pop('partition', '')
 if not name and not partition:
 # Root folder - https://localhost/mgmt/tm/sys/folder/~
 load_uri = base_uri + '~'
 elif not name and partition:
 # Top level - https://localhost/mgmt/tm/sys/folder/~partition
 load_uri = base_uri + '~' + partition
 elif name and not partition:
 # Top level - https://localhost/mgmt/tm/sys/folder/~partition
 load_uri = base_uri + '~' + name
 else:
 # Nested Folder (allow for name to be many folders)
 # https://localhost/mgmt/tm/sys/folder/~partition~f1~f2
 name = name.replace('/', '~')
 load_uri = base_uri + '~' + partition + '~' + name
 return load_uri

 def _load(self, **kwargs):
 read_session = self._meta_data['bigip']._meta_data['icr_session']
 load_uri = self._create_subpath_uri(kwargs)
 response = read_session.get(load_uri, uri_as_parts=False, **kwargs)
 self._local_update(response.json())
 self._activate_URI(self.selfLink)
 return self

 def update(self, **kwargs):
 '''Update the object, removing device group if inherited

 If inheritedDevicegroup is the string "true" we need to remove
 deviceGroup from the args before we update or we get the
 following error:

 The floating traffic-group: /Common/traffic-group-1 can only be set on
 /testfolder if its device-group is inherited from the root folder
 '''
 inherit_device_group = self.__dict__.get('inheritedDevicegroup', False)
 if inherit_device_group == 'true':
 self.__dict__.pop('deviceGroup')
 return self._update(**kwargs)

 def exists(self, **kwargs):
 """Check for the existence of the named object on the BigIP

 Tries to `load()` the object and if it fails checks the exception
 for 404. If the `load()` is successful it returns `True` if the
 exception is :exc:`requests.HTTPError` and the
 ``status_code`` is ``404``
 it will return error. All other errors are raised as is.

 :param kwargs: Keyword arguments required to get objects
 NOTE: If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.get method where it will
 be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
 :returns: bool -- The objects exists on BigIP or not.
 :raises: :exc:`requests.HTTPError`, Any HTTP error that was not status
 code 404.
 """
 requests_params = self._handle_requests_params(kwargs)
 self._check_load_parameters(**kwargs)
 load_uri = self._create_subpath_uri(kwargs)
 session = self._meta_data['bigip']._meta_data['icr_session']
 kwargs.update(requests_params)
 try:
 session.get(load_uri, **kwargs)
 except HTTPError as err:
 print(err.response.text)
 if err.response.status_code == 404:
 return False
 else:
 raise
 return True

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/db.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.db

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP db module

REST URI
 ``http://localhost/mgmt/sys/db/``

GUI Path
 N/A

REST Kind
 ``tm:sys:db:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource
from f5.bigip.resource import UnsupportedOperation

[docs]class Dbs(Collection):
 """BigIP db collection"""
 def __init__(self, sys):
 super(Dbs, self).__init__(sys)
 self._meta_data['allowed_lazy_attributes'] = [Db]
 self._meta_data['attribute_registry'] =\
 {'tm:sys:db:dbstate': Db}

[docs]class Db(Resource):
 """BigIP db resource

 .. note::
 db objects are read-only.
 """
 def __init__(self, dbs):
 super(Db, self).__init__(dbs)
 self._meta_data['required_json_kind'] = 'tm:sys:db:dbstate'

[docs] def create(self, **kwargs):
 '''Create is not supported for db resources.

 :raises: UnsupportedOperation
 '''
 raise UnsupportedOperation(
 "DB resources doesn't support create, only load and refresh"
)

[docs] def delete(self, **kwargs):
 '''Delete is not supported for db resources.

 :raises: UnsupportedOperation
 '''
 raise UnsupportedOperation(
 "DB resources doesn't support delete, only load and refresh"
)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/global_settings.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.global_settings

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP system global-settings module

REST URI
 ``http://localhost/mgmt/tm/sys/global-settings``

GUI Path
 ``System --> Configuration --> Device``

REST Kind
 ``tm:sys:global-settings:*``
"""

from f5.bigip.mixins import UnnamedResourceMixin
from f5.bigip.resource import Resource

[docs]class Global_Settings(UnnamedResourceMixin, Resource):
 """BigIP system global-settings resource

 The global_settings object only supports load and update because it is an
 unnamed resource.

 .. note::

 This is an unnamed resource so it has not ~Partition~Name pattern
 at the end of its URI.
 """
 def __init__(self, sys):
 super(Global_Settings, self).__init__(sys)
 endpoint = self.__class__.__name__.lower().replace('_', '-')
 self._meta_data['required_refresh_parameters'] = set()
 self._meta_data['required_json_kind'] =\
 'tm:sys:global-settings:global-settingsstate'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + endpoint + '/'

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/performance.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.performance

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP system peformance stats module.

REST URI
 ``http://localhost/mgmt/tm/sys/performance``

GUI Path
 ``System --> Users --> Partition List``

REST Kind
 ``tm:sys:performance:*``
"""

from f5.bigip.mixins import UnnamedResourceMixin
from f5.bigip.resource import Collection
from f5.bigip.resource import Resource
from f5.bigip.resource import UnsupportedOperation

[docs]class Performance(Collection):
 """BigIP system performace stats collection"""
 def __init__(self, sys):
 super(Performance, self).__init__(sys)
 self._meta_data['allowed_lazy_attributes'] = [All_Stats]
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + "performance/"

[docs] def get_collection(self):
 '''Performance collections are not proper BigIP collection objects.

 :raises: :exc:`~f5.bigip.resource.UnsupportedOperation`
 '''
 raise UnsupportedOperation(
 "The iControl REST URI mgmt/sys/performance/ does not respond " +
 "GET requests."
)

[docs]class All_Stats(UnnamedResourceMixin, Resource):
 """BigIP system performace stats unnamed resource"""
 def __init__(self, performance):
 super(All_Stats, self).__init__(performance)
 self._meta_data['required_refresh_parameters'] = set()
 self._meta_data['required_json_kind'] =\
 'tm:sys:performance:all-stats:all-statsstats'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + "all-stats/"

[docs] def update(self, **kwargs):
 '''Update is not supported for statistics.

 :raises: :exc:`~f5.bigip.resource.UnsupportedOperation`
 '''
 raise UnsupportedOperation(
 'Stats do not support create, only load and refresh')

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/application.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.application

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP iApp (application) module

REST URI
 ``http://localhost/mgmt/sys/application/``

GUI Path
 ``iApps``

REST Kind
 ``tm:sys:application:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import KindTypeMismatch
from f5.bigip.resource import Resource

from requests import HTTPError

[docs]class Applications(Collection):
 """BigIP iApp collection."""
 def __init__(self, sys):
 super(Applications, self).__init__(sys)
 self._meta_data['allowed_lazy_attributes'] = [
 Aplscripts,
 Customstats,
 Services,
 Templates
]

[docs]class Aplscripts(Collection):
 """BigIP iApp script collection."""
 def __init__(self, application):
 super(Aplscripts, self).__init__(application)
 self._meta_data['allowed_lazy_attributes'] = [Aplscript]
 self._meta_data['attribute_registry'] =\
 {'tm:sys:application:apl-script:apl-scriptstate': Aplscript}

[docs]class Aplscript(Resource):
 """BigIP iApp script resource."""
 def __init__(self, apl_script_s):
 super(Aplscript, self).__init__(apl_script_s)
 self._meta_data['required_json_kind'] =\
 'tm:sys:application:apl-script:apl-scriptstate'

[docs]class Customstats(Collection):
 """BigIP iApp custom stats sub-collection."""
 def __init__(self, application):
 super(Customstats, self).__init__(application)
 self._meta_data['allowed_lazy_attributes'] = [Customstat]
 self._meta_data['attribute_registry'] =\
 {'tm:sys:application:custom-stat:custom-statstate': Customstat}

[docs]class Customstat(Resource):
 """BigIP iApp custom stats sub-collection resource."""
 def __init__(self, custom_stat_s):
 super(Customstat, self).__init__(custom_stat_s)
 self._meta_data['required_json_kind'] =\
 'tm:sys:application:custom-stat:custom-statstate'

[docs]class Services(Collection):
 """BigIP iApp service sub-collection."""
 def __init__(self, application):
 super(Services, self).__init__(application)
 self._meta_data['allowed_lazy_attributes'] = [Service]
 self._meta_data['attribute_registry'] =\
 {'tm:sys:application:service:servicestate': Service}

[docs]class Service(Resource):
 """BigIP iApp service sub-collection resource"""
 def __init__(self, service_s):
 super(Service, self).__init__(service_s)
 self._meta_data['required_creation_parameters'].update(
 ('template', 'partition')
)
 self._meta_data['required_refresh_parameters'].update(('partition',))
 self._meta_data['required_json_kind'] =\
 'tm:sys:application:service:servicestate'
 self._meta_data['disallowed_load_parameters'] = \
 set(['template', 'trafficGroup'])

 def _create(self, **kwargs):
 '''Create service on device and create accompanying Python object.

 :params kwargs: keyword arguments passed in from create call
 :raises: KindTypeMismatch
 :raises: HTTPError
 :returns: Python Service object
 '''

 try:
 super(Service, self)._create(**kwargs)
 except HTTPError as ex:
 if "The configuration was updated successfully but could not be " \
 "retrieved" not in ex.response.text:
 raise

 # BigIP will create in Common partition if none is given.
 # In order to create the uri properly in this class's load,
 # drop in Common as the partition in kwargs.
 if 'partition' not in kwargs:
 kwargs['partition'] = 'Common'

 # If response was created successfully, do a local_update.
 # If not, call to overridden _load method via load
 self.load(**kwargs)
 if self.kind != self._meta_data['required_json_kind']:
 error_message = "For instances of type '%r' the corresponding"\
 " kind must be '%r' but creation returned JSON with kind: %r"\
 % (self.__class__.__name__,
 self._meta_data['required_json_kind'],
 self.kind)
 raise KindTypeMismatch(error_message)

 return self

[docs] def update(self, **kwargs):
 '''Push local updates to the object on the device.

 :params kwargs: keyword arguments for accessing/modifying the object
 :returns: updated Python object
 '''

 inherit_device_group = self.__dict__.get('inheritedDevicegroup', False)
 if inherit_device_group == 'true':
 self.__dict__.pop('deviceGroup')
 return self._update(**kwargs)

 def _load(self, **kwargs):
 '''Load python Service object with response JSON from BigIP.

 :params kwargs: keyword arguments for talking to the device
 :returns: populated Service object
 '''
 # Some kwargs should be popped before we do a load
 for key in self._meta_data['disallowed_load_parameters']:
 if key in kwargs:
 kwargs.pop(key)

 self._check_load_parameters(**kwargs)
 name = kwargs.pop('name')
 partition = kwargs.pop('partition')
 read_session = self._meta_data['bigip']._meta_data['icr_session']
 base_uri = self._meta_data['container']._meta_data['uri']

 load_uri = self._build_service_uri(base_uri, partition, name)
 response = read_session.get(load_uri, uri_as_parts=False, **kwargs)
 self._local_update(response.json())
 self._activate_URI(self.selfLink)
 return self

 def _build_service_uri(self, base_uri, partition, name):
 '''Build the proper uri for a service resource.

 This follows the scheme:
 <base_uri>/~<partition>~<<name>.app>~<name>

 :param base_uri: str -- base uri for container
 :param partition: str -- partition for this service
 :param name: str -- name of the service
 :returns: str -- uri to access this service
 '''
 name = name.replace('/', '~')
 return '%s~%s~%s.app~%s' % (base_uri, partition, name, name)

[docs] def exists(self, **kwargs):
 '''Check for the existence of the named object on the BigIP

 Override of resource.Resource exists() to build proper URI unique to
 service resources.

 Sends an HTTP GET to the URI of the named object and if it fails with
 a :exc:~requests.HTTPError` exception it checks the exception for
 status code of 404 and returns :obj:`False` in that case.

 If the GET is successful it returns :obj:`True`.

 For any other errors are raised as-is.

 :param kwargs: Keyword arguments required to get objects
 NOTE: If kwargs has a 'requests_params' key the corresponding dict will
 be passed to the underlying requests.session.get method where it will
 be handled according to that API. THIS IS HOW TO PASS QUERY-ARGS!
 :returns: bool -- The objects exists on BigIP or not.
 :raises: :exc:`requests.HTTPError`, Any HTTP error that was not status
 code 404.
 '''

 requests_params = self._handle_requests_params(kwargs)
 self._check_load_parameters(**kwargs)
 kwargs['uri_as_parts'] = False
 session = self._meta_data['bigip']._meta_data['icr_session']
 base_uri = self._meta_data['container']._meta_data['uri']
 partition = kwargs.pop('partition')
 name = kwargs.pop('name')

 exists_uri = self._build_service_uri(base_uri, partition, name)
 kwargs.update(requests_params)
 try:
 session.get(exists_uri, **kwargs)
 except HTTPError as err:
 if err.response.status_code == 404:
 return False
 else:
 raise
 return True

[docs]class Templates(Collection):
 """BigIP iApp template sub-collection"""
 def __init__(self, application):
 super(Templates, self).__init__(application)
 self._meta_data['allowed_lazy_attributes'] = [Template]
 self._meta_data['attribute_registry'] =\
 {'tm:sys:application:template:templatestate': Template}

[docs]class Template(Resource):
 """BigIP iApp template sub-collection resource"""
 def __init__(self, template_s):
 super(Template, self).__init__(template_s)
 self._meta_data['required_creation_parameters'].update(('partition',))
 self._meta_data['required_refresh_parameters'].update(('partition',))
 self._meta_data['required_json_kind'] =\
 'tm:sys:application:template:templatestate'

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/virtual.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.virtual

Copyright 2014 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Manager (LTM) virtual module.

REST URI
 ``http://localhost/mgmt/tm/ltm/virtual``

GUI Path
 ``Local Traffic --> Virtual Servers``

REST Kind
 ``tm:ltm:virtual:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Virtuals(Collection):
 """BigIP LTM virtual collection"""
 def __init__(self, ltm):
 super(Virtuals, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Virtual]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:virtual:virtualstate': Virtual}

[docs]class Virtual(Resource):
 """BigIP LTM virtual resource"""
 def __init__(self, virtual_s):
 super(Virtual, self).__init__(virtual_s)
 self._meta_data['required_json_kind'] = 'tm:ltm:virtual:virtualstate'

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_table_ltm_pool.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool

		Kind
		tm:ltm:pool:poolcollectionstate

		Type
		collection

		Class
		f5.bigip.ltm.pool.Pools

		Instantiation
		pools = bigip.ltm.pools

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/snat.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.snat

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Manager (LTM) Snat module.

REST URI
 ``http://localhost/mgmt/tm/ltm/snat``

GUI Path
 ``Local Traffic --> Snat``

REST Kind
 ``tm:ltm:snat:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import MissingRequiredCreationParameter
from f5.bigip.resource import Resource

class RequireOneOf(MissingRequiredCreationParameter):
 pass

[docs]class Snats(Collection):
 """BigIP LTM Snat collection"""
 def __init__(self, ltm):
 super(Snats, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Snat]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:snat:snatstate': Snat}

[docs]class Snat(Resource):
 """BigIP LTM Snat resource"""
 def __init__(self, snat_s):
 '''This represents a Snat.

 "origins" is our first example of a dict attribute, it appears to
 behave as expected.
 '''
 super(Snat, self).__init__(snat_s)
 self._meta_data['required_json_kind'] = 'tm:ltm:snat:snatstate'
 self._meta_data['required_creation_parameters'].update(
 ('partition', 'origins'))

[docs] def create(self, **kwargs):
 """Call this to create a new snat on the BigIP.

 Uses HTTP POST to 'containing' URI to create a service associated with
 a new URI on the device.

 Note this is the one of two fundamental Resource operations that
 returns a different uri (in the returned object) than the uri the
 operation was called on. The returned uri can be accessed as
 Object.selfLink, the actual uri used by REST operations on the object
 is Object._meta_data['uri']. The _meta_data['uri'] is the same as
 Object.selfLink with the substring 'localhost' replaced with the value
 of Object._meta_data['bigip']._meta_data['hostname'], and without
 query args, or hash fragments.

 The following is done prior to the POST
 * Ensures that one of ``automap``, ``snatpool``, ``translastion``
 parameter is passed in.

 :param kwargs: All the key-values needed to create the resource
 :returns: An instance of the Python object that represents the device's
 uri-published resource. The uri of the resource is part of the
 object's _meta_data.
 """
 rcp = self._meta_data['required_creation_parameters']
 required_singles = set(('automap', 'snatpool', 'translation'))
 pre_req_len = len(kwargs.keys())
 if len(rcp - required_singles) != (pre_req_len-1):
 error_message = 'Creation requires one of the provided k,v:\n'
 for req_sing in required_singles:
 try:
 req_val = kwargs.pop(req_sing)
 except KeyError:
 req_val = ''
 error_message = error_message + str(req_sing) + ', ' +\
 str(req_val) + '\n'
 raise RequireOneOf(error_message)
 self._create(**kwargs)
 return self

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/failover.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.failover

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
"""BigIP system failover module

REST URI
 ``http://localhost/mgmt/tm/sys/failover``

GUI Path
 ``System --> Failover``

REST Kind
 ``tm:sys:failover:*``
"""

from f5.bigip.mixins import UnnamedResourceMixin
from f5.bigip.resource import Resource

[docs]class Failover(UnnamedResourceMixin, Resource):
 '''BigIP Failover stats and state change.

 The failover object only supports load, update, and refresh because it is
 an unnamed resource.

 To force the unit to standby call the ``update()`` method as follows:

 .. code-block:: python
 f.update(command='run', standby=None, trafficGroup='mytrafficgroup')

 .. note::

 This is an unnamed resource so it has not ~Partition~Name pattern
 at the end of its URI.
 '''
 def __init__(self, sys):
 super(Failover, self).__init__(sys)
 endpoint = self.__class__.__name__.lower()
 self._meta_data['required_refresh_parameters'] = set()
 self._meta_data['required_json_kind'] =\
 'tm:sys:failover:failoverstats'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + endpoint + '/'

[docs] def update(self, **kwargs):
 '''Update is not supported for Failover

 :raises: UnsupportedOperation
 '''
 raise self.UnsupportedMethod(
 "%s does not support the update method" % self.__class__.__name__
)

[docs] def toggle_standby(self, **kwargs):
 '''Toggle the standby status of a traffic group.

 WARNING: This method which used POST obtains json keys from the device
 that are not available in the response to a GET against the same URI.

 Unique to refresh/GET:
 u"apiRawValues"
 u"selfLink"
 Unique to toggle_standby/POST:
 u"command"
 u"standby"
 u"traffic-group"
 '''
 state = kwargs.pop('state')
 trafficgroup = kwargs.pop('trafficgroup')
 if kwargs:
 raise TypeError('Unexpected **kwargs: %r' % kwargs)
 payload = {u"command": u"run",
 u"standby": state,
 u"traffic-group": trafficgroup}
 standby_session = self._meta_data["bigip"]._meta_data["icr_session"]
 uri = self._meta_data['uri']
 response = standby_session.post(uri, json=payload)
 self._local_update(response.json())

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/rule.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.rule

Copyright 2014-2015 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Manager (LTM) rule module.

REST URI
 ``http://localhost/mgmt/tm/ltm/rule``

GUI Path
 ``Local Traffic --> Rules``

REST Kind
 ``tm:ltm:rule:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Rules(Collection):
 """BigIP LTM rule collection"""
 def __init__(self, ltm):
 super(Rules, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Rule]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:rule:rulestate': Rule}

[docs]class Rule(Resource):
 """BigIP LTM rule resource"""
 def __init__(self, rule_s):
 super(Rule, self).__init__(rule_s)
 self._meta_data['required_json_kind'] = 'tm:ltm:rule:rulestate'
 self._meta_data['required_creation_parameters'].update(
 ('name', 'partition', 'apiAnonymous'))

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_tables.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/

		Kind
		tm:restgroupresolverviewstate

		Type
		organizing collection

		Class
		f5.bigip.BigIP

		Instantiation
		bigip = BigIP('192.168.1.1', 'myuser', 'mypass')

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm

		Kind
		tm:ltm:collectionstate

		Type
		organizing collection

		Class
		f5.bigip.ltm

		Instantiation
		ltm = bigip.ltm

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool

		Kind
		tm:ltm:pool:poolcollectionstate

		Type
		collection

		Class
		f5.bigip.ltm.pool.Pools

		Instantiation
		pools = bigip.ltm.pools

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/

		Kind
		tm:ltm:pool:poolstate

		Type
		resource

		Class
		f5.bigip.ltm.pool.Pool

		Instantiation
		pool = pools.pool.load(partition='Common', name='mypool')

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members

		Kind
		tm:ltm:pool:members:memberscollectionstate

		Type
		subcollection

		Class
		f5.bigip.ltm.pool.Members_s

		Instantiation
		members = pool.members_s

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1

		Kind
		tm:ltm:pool:members:membersstate

		Type
		subcollection resource

		Class
		f5.bigip.ltm.pool.Members

		Instantiation
		members = pool.members_s.members.load(partition='Common', name='member1:<port>')

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_table_ltm_pool_pools.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/

		Kind
		tm:ltm:pool:poolstate

		Type
		resource

		Class
		f5.bigip.ltm.pool.Pool

		Instantiation
		pool = pools.pool.load(partition='Common', name='mypool')

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/policy.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.policy

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Manager (LTM) policy module.

REST URI
 ``http://localhost/mgmt/tm/ltm/policy``

GUI Path
 ``Local Traffic --> policy``

REST Kind
 ``tm:ltm:policy:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Policys(Collection):
 """BigIP LTM policy collection."""
 def __init__(self, ltm):
 super(Policys, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Policy]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:policy:policystate': Policy}

[docs]class Policy(Resource):
 """BigIP LTM policy resource."""
 def __init__(self, policy_s):
 super(Policy, self).__init__(policy_s)
 self._meta_data['required_json_kind'] = 'tm:ltm:policy:policystate'
 self._meta_data['required_creation_parameters'].update(('strategy',))
 temp = {'tm:ltm:policy:rules:rulescollectionstate': Rules_s}
 self._meta_data['attribute_registry'] = temp

[docs]class Rules_s(Collection):
 """BigIP LTM policy rules sub-collection."""
 def __init__(self, policy):
 super(Rules_s, self).__init__(policy)
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:policy:rules:rulesstate': Rules}
 self._meta_data['required_json_kind'] =\
 'tm:ltm:policy:rules:rulescollectionstate'
 self._meta_data['allowed_lazy_attributes'] = [Rules]

[docs]class Rules(Resource):
 """BigIP LTM policy rules sub-collection resource."""
 def __init__(self, rules_s):
 super(Rules, self).__init__(rules_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:policy:rules:rulesstate'
 temp = {'tm:ltm:policy:rules:actions:actionscollectionstate':
 Actions_s,
 'tm:ltm:policy:rules:conditions:conditionscollectionstate':
 Conditions_s}
 self._meta_data['attribute_registry'] = temp

[docs]class Actions_s(Collection):
 """BigIP LTM policy actions sub-collection."""
 def __init__(self, rules):
 super(Actions_s, self).__init__(rules)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:policy:rules:actions:actionscollectionstate'
 self._meta_data['allowed_lazy_attributes'] = [Actions]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:policy:rules:actions:actionsstate': Actions}

[docs]class Actions(Resource):
 """BigIP LTM policy actions sub-collection resource."""
 def __init__(self, actions_s):
 super(Actions, self).__init__(actions_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:policy:rules:actions:actionsstate'

[docs]class Conditions_s(Collection):
 """BigIP LTM policy conditions sub-collection."""
 def __init__(self, rules):
 super(Conditions_s, self).__init__(rules)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:policy:rules:conditions:conditionscollectionstate'
 self._meta_data['allowed_lazy_attributes'] = [Conditions]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:policy:rules:conditions:conditionsstate': Conditions}

[docs]class Conditions(Resource):
 """BigIP LTM policy conditions sub-collection resource."""
 def __init__(self, conditions_s):
 super(Conditions, self).__init__(conditions_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:policy:rules:conditions:conditionsstate'

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_table_ltm_pool_members.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1

		Kind
		tm:ltm:pool:members:membersstate

		Type
		subcollection resource

		Class
		f5.bigip.ltm.pool.Members

		Instantiation
		members = pool.members_s.members.load(partition='Common', name='member1:<port>')

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/sys/ntp.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.sys.ntp

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP system ntp module

REST URI
 ``http://localhost/mgmt/tm/sys/ntp``

GUI Path
 ``System --> Configuration --> Device --> NTP``

REST Kind
 ``tm:sys:ntp:*``
"""

from f5.bigip.mixins import UnnamedResourceMixin
from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Ntp(UnnamedResourceMixin, Resource):
 """BigIP system NTP unnamed resource

 .. note::

 This is an unnamed resource so it has not ~Partition~Name pattern
 at the end of its URI.
 """
 def __init__(self, sys):
 super(Ntp, self).__init__(sys)
 endpoint = self.__class__.__name__.lower()
 self._meta_data['required_refresh_parameters'] = set()
 self._meta_data['required_json_kind'] = 'tm:sys:ntp:ntpstate'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + endpoint + '/'
 self._meta_data['attribute_registry'] = {
 'tm:sys:ntp:restrict:restrictcollectionstate': Restricts
 }

[docs]class Restricts(Collection):
 """BigIP system NTP restrict sub-collection"""
 def __init__(self, ntp):
 super(Restricts, self).__init__(ntp)
 self._meta_data['allowed_lazy_attributes'] = [Restrict]
 self._meta_data['required_json_kind'] =\
 'tm:sys:ntp:restrict:restrictcollectionstate'
 self._meta_data['attribute_registry'] =\
 {'tm:sys:ntp:restrict:restrictstate': Restrict}

[docs]class Restrict(Resource):
 """BigIP system NTP restrict sub-collection resource"""
 def __init__(self, restricts):
 super(Restrict, self).__init__(restricts)
 self._meta_data['required_json_kind'] =\
 'tm:sys:ntp:restrict:restrictstate'

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_table_ltm.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm

		Kind
		tm:ltm:collectionstate

		Type
		organizing collection

		Class
		f5.bigip.ltm

		Instantiation
		ltm = bigip.ltm

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/pycontrol/pycontrol.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.pycontrol »

 Source code for f5.bigip.pycontrol.pycontrol

#!/bin/env python

Copyright 2014 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import logging
import platform
import ssl

try:
 import StringIO
 from urllib import pathname2url
 from urllib2 import HTTPBasicAuthHandler
 from urllib2 import HTTPSHandler
 from urllib2 import ProxyHandler

except ImportError:
 from io import StringIO as StringIO # @NoMove
 from urllib.request import HTTPBasicAuthHandler # @UnusedImport
 from urllib.request import HTTPSHandler # @UnusedImport
 from urllib.request import pathname2url
 from urllib.request import ProxyHandler # @UnusedImport

from suds.cache import Cache
from suds.client import Client
from suds.client import Factory
from suds.client import ServiceSelector
from suds.options import Options
from suds.plugin import PluginContainer
from suds.reader import DefinitionsReader
from suds.servicedefinition import ServiceDefinition
from suds import transport
from suds.wsdl import Definitions
from suds.xsd.doctor import Import
from suds.xsd.doctor import ImportDoctor

Fix missing imports. These can be global, as it applies to all f5 WSDLS.
IMP = Import('http://schemas.xmlsoap.org/soap/encoding/')
DOCTOR = ImportDoctor(IMP)
ICONTROL_URI = '/iControl/iControlPortal.cgi'
SESSION_WSDL = 'System.Session'

__version__ = '2.1'
__build__ = 'r3'

[docs]class BIGIP(object):
 """Wrap suds client object(s) and create a user-friendly class to use."""
 def __init__(self, hostname=None, username=None,
 password=None, wsdls=None, directory=None,
 fromurl=False, debug=False, proto='https',
 sessions=False, cache=True, **kwargs):

 self.hostname = hostname
 self.username = username
 self.password = password
 self.directory = directory
 self.sessions = sessions
 self.fromurl = fromurl
 self.proto = proto
 self.debug = debug
 self.kw = kwargs
 self.sessionid = None

 # Setup the in-memory object cache
 if cache:
 self.cache = InMemoryCache()
 else:
 self.cache = None

 if self.debug:
 self._set_trace_logging()

 if not wsdls:
 wsdls = []

 if self.sessions:
 if SESSION_WSDL in wsdls:
 self.wsdls = [x for x in wsdls if not x.startswith(
 'System.Session')]
 self.wsdls.insert(0, SESSION_WSDL)
 else:
 self.wsdls = wsdls
 self.wsdls.insert(0, SESSION_WSDL)
 else:
 self.wsdls = wsdls

 self.clients = self._get_clients()

 for client in self.clients:
 self._build_suds_interface(client)

 # ---------------------
 # Methods to modify active pyControl objects
 # ---------------------
[docs] def set_timeout(self, timeout):
 if 0 < timeout <= 300:
 for client in self.clients:
 client.set_options(timeout=timeout)

[docs] def add_interface(self, wsdl):
 if wsdl not in self.wsdls:
 self.wsdls.append(wsdl)
 client = self._get_client(wsdl)
 self._build_suds_interface(client)
 self.clients.append(client)

[docs] def add_interfaces(self, wsdls):
 for wsdl in wsdls:
 if wsdl not in self.wsdls:
 self.wsdls.append(wsdl)
 client = self._get_client(wsdl)
 self._build_suds_interface(client)
 self.clients.append(client)

 # ---------------------
 # Setters and getters.
 # ---------------------

[docs] def get_sessionid(self):
 """Fetch a session identifier from a v11.x BigIP."""
 mod = getattr(self, 'System')
 sessionid = getattr(mod, 'Session').get_session_identifier()
 return sessionid

 @staticmethod
[docs] def set_sessionid(sessionid, client):
 """Sets the session header for a client.

 @sessionid (String) - session_id to add to the
 X-iControl-Session header.
 @client - client object.

 """
 client.set_options(headers={'X-iControl-Session': sessionid})

 # ---------------------
 # Private methods
 # ---------------------

 def _build_suds_interface(self, client):
 location = '%s://%s%s' % (self.proto, self.hostname, ICONTROL_URI)

 self._set_module_attributes(client)
 self._set_interface_attributes(client)
 self._set_interface_sudsclient(client)
 self._set_type_factory(client)
 self._set_interface_methods(client)
 client.factory.separator('_')
 client.set_options(location=location, cache=self.cache)

 if self.sessions:
 if self.sessionid:
 pass
 else:
 self.sessionid = self.get_sessionid()

 self.set_sessionid(self.sessionid.__str__(), client)

 def _get_client(self, wsdl):
 url = self._set_url(wsdl)
 return self._get_suds_client(url, **self.kw)

 def _get_clients(self):
 """Get a suds client for the wsdls passed in."""
 clients = []
 for wsdl in self.wsdls:
 client = self._get_client(wsdl)
 clients.append(client)
 return clients

 @staticmethod
 def _get_module_name(c):
 """Returns the module name. Ex: 'LocalLB' """
 return c.sd[0].service.name.split('.')[0]

 def _get_module_object(self, c):
 """Returns a module object (e.g. LocalLB) """
 return getattr(self, self._get_module_name(c))

 @staticmethod
 def _get_interface_name(c):
 """Returns the interface name. Ex: 'Pool' from 'LocalLB.Pool'"""
 return c.sd[0].service.name.split('.')[1]

 def _get_interface_object(self, c, module):
 """Returns an interface object (e.g. Pool).

 @c (String) - client object
 @module - module object

 """

 return getattr(module, self._get_interface_name(c))

 @staticmethod
 def _get_methods(c):
 """Get and return a list of methods for a specific iControl interface

 """

 methods = [method[0] for method in c.sd[0].ports[0][1]]
 return methods

 def _get_suds_client(self, url, **kw):
 """Make a suds client for a specific WSDL (via url).

 Added new Suds cache features. Warning: These don't work on
 Windows. *nix should be fine. Also exposed general kwargs to
 pass down to Suds for advance users who don't want to deal
 with set_options().
 """
 if not url.startswith("https"):
 t = transport.http.HttpAuthenticated(username=self.username,
 password=self.password)
 c = ROClient(url, transport=t, username=self.username,
 password=self.password, doctor=DOCTOR, **kw)
 else:
 t = HTTPSUnVerifiedCertTransport(username=self.username,
 password=self.password)
 c = ROClient(url, transport=t, username=self.username,
 password=self.password, doctor=DOCTOR, **kw)
 return c

 def _set_url(self, wsdl):
 """Set the path of file-based wsdls for processing.

 If not file-based, return a fully qualified url
 to the WSDL.
 """
 if self.fromurl:
 if wsdl.endswith('wsdl'):
 wsdl.replace('.wsdl', '')

 qstring = '?WSDL=%s' % wsdl
 return 'https://%s%s' % (self.hostname, ICONTROL_URI + qstring)
 else:
 if wsdl.endswith('wsdl'):
 pass
 else:
 wsdl += '.wsdl'

 # Check for windows and use goofy paths. Otherwise assume *nix
 if platform.system().lower() == 'windows':
 url = 'file:' + pathname2url(self.directory + '\\' + wsdl)
 else:
 url = 'file:' + pathname2url(self.directory + '/' + wsdl)
 return url

 def _set_module_attributes(self, c):
 """Sets appropriate attributes for a Module."""
 module = self._get_module_name(c)
 if hasattr(self, module):
 return
 else:
 setattr(self, module, ModuleInstance(module))

 def _set_interface_sudsclient(self, c):
 """Set an attribute that points to the actual suds client.

 This will allow for power-users to get at suds client internals.
 """
 module = self._get_module_object(c)
 interface = self._get_interface_object(c, module)
 setattr(interface, 'suds', c)

 def _set_interface_attributes(self, c):
 """Sets appropriate attributes for a Module."""
 module = self._get_module_object(c)
 interface = self._get_interface_name(c)
 setattr(module, interface, InterfaceInstance(interface))

 def _set_interface_methods(self, c):
 """Sets up methods as attributes for a particular iControl interface.

 Method keys (attrs) point to suds.service objects for the interface.
 """
 module = self._get_module_object(c)
 interface = self._get_interface_object(c, module)
 methods = self._get_methods(c)

 for method in methods:
 suds_method = getattr(c.service, method)
 setattr(interface, method, suds_method)
 m = getattr(interface, method)
 self._set_method_input_params(c, m, method)
 self._set_return_type(c, m, method)

 @staticmethod
 def _set_method_input_params(c, interface_method, method):
 """Set the method input argument attribute named 'params' for easy reference.

 """

 m = c.sd[0].ports[0][0].method(method)
 params = []
 for x in m.soap.input.body.parts:
 params.append((x.name, x.type[0]))
 setattr(interface_method, 'params', params)

 @staticmethod
 def _set_return_type(c, interface_method, method):
 """Sets the return type in an attribute named response_type"""
 m = c.sd[0].ports[0][0].method(method)
 if len(m.soap.output.body.parts):
 res = m.soap.output.body.parts[0].type[0]
 setattr(interface_method, 'response_type', res)
 else:
 setattr(interface_method, 'response_type', None)

 def _set_type_factory(self, c):
 factory = getattr(c, 'factory')
 module = self._get_module_object(c)
 interface = self._get_interface_object(c, module)
 setattr(interface, 'typefactory', factory)

 @staticmethod
 def _set_trace_logging():
 logging.basicConfig(level=logging.INFO)
 logging.getLogger('suds.client').setLevel(logging.DEBUG)

[docs]class ModuleInstance(object):
 """An iControl module object to set attributes against."""
 def __init__(self, name):
 self.name = name

[docs]class InterfaceInstance(object):
 """An iControl interface object to set attributes against."""
 def __init__(self, name):
 self.name = name

[docs]class ROClient(Client):
 def __init__(self, url, **kwargs):
 """ROClient

 @param url: The URL for the WSDL.
 @type url: str
 @param kwargs: keyword arguments.
 @see: L{Options}
 """
 options = Options()
 options.transport = transport.https.HttpAuthenticated()
 self.options = options
 options.cache = InMemoryCache()
 self.set_options(**kwargs)
 reader = DefinitionsReader(options, Definitions)
 self.wsdl = reader.open(url)
 plugins = PluginContainer(options.plugins)
 plugins.init.initialized(wsdl=self.wsdl)
 self.factory = Factory(self.wsdl)
 self.service = ServiceSelector(self, self.wsdl.services)
 self.sd = []
 for s in self.wsdl.services:
 sd = ServiceDefinition(self.wsdl, s)
 self.sd.append(sd)
 self.messages = dict(tx=None, rx=None)

[docs]class InMemoryCache(Cache):
 """In-memory cache.

 The contents of the cache is shared between all instances.
 """
 data = {}

[docs] def get(self, objid):
 return self.data.get(objid)

[docs] def getf(self, objid):
 obj = self.get(objid)
 return StringIO(obj) if obj else None

[docs] def put(self, objid, obj):
 self.data[objid] = obj

[docs] def putf(self, objid, fp):
 self.put(fp.read())

[docs] def purge(self, objid):
 del self.data[objid]

[docs] def clear(self):
 self.data = {}

[docs]class HTTPSUnVerifiedCertTransport(transport.https.HttpAuthenticated):

 def __init__(self, *args, **kwargs):
 transport.https.HttpAuthenticated.__init__(self, *args, **kwargs)

[docs] def u2handlers(self):
 handlers = []
 handlers.append(ProxyHandler(self.proxy))
 handlers.append(HTTPBasicAuthHandler(self.pm))
 # python ssl Context support - PEP 0466
 if hasattr(ssl, '_create_unverified_context'):
 ssl_context = ssl._create_unverified_context()
 handlers.append(HTTPSHandler(context=ssl_context))
 else:
 handlers.append(HTTPSHandler())
 return handlers

[docs]def main():
 import sys
 if len(sys.argv) < 4:
 print("Usage: %s <hostname> <username> <password>" % sys.argv[0])
 sys.exit()

 a = sys.argv[1:]
 b = BIGIP(hostname=a[0],
 username=a[1],
 password=a[2],
 fromurl=True,
 wsdls=['LocalLB.Pool'])

 pools = b.LocalLB.Pool.get_list()
 version = b.LocalLB.Pool.get_version()
 print("Version is: %s\n" % version)
 print("Pools:")
 for x in pools:
 print("\t%s" % x)

if __name__ == '__main__':
 main()

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_table_tm.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/

		Kind
		tm:restgroupresolverviewstate

		Type
		organizing collection

		Class
		f5.bigip.BigIP

		Instantiation
		bigip = BigIP('192.168.1.1', 'myuser', 'mypass')

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/net/route_domain.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.route_domain

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""Directory: net module: route-domain.

REST URI
 ``https://localhost/mgmt/tm/net/route-domain?ver=11.6.0``

GUI Path
 ``XXX``

REST Kind
 ``tm:net:route-domain:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Route_Domains(Collection):
 '''A Collection concrete subclass docstring.'''
 def __init__(self, net):
 '''Auto generated constructor.'''
 super(Route_Domains, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [Route_Domain]
 self._meta_data['attribute_registry'] =\
 {u'tm:net:route-domain:route-domainstate': u'Route_Domain'}
 self._meta_data['template_generated'] = True
 self._meta_data['uri'] = self._meta_data['uri'].replace('_', '-')

[docs]class Route_Domain(Resource):
 '''A Resource concrete subclass.'''
 def __init__(self, Route_Domains):
 '''Autogenerated constructor.'''
 super(Route_Domain, self).__init__(Route_Domains)
 self._meta_data['template_generated'] = True
 self._meta_data['read_only_attributes'].append('id')
 self._meta_data['required_json_kind'] =\
 u"tm:net:route-domain:route-domainstate"
 self._meta_data['attribute_registry'] =\
 {}

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/pool.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.pool

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Manager (LTM) pool module.

REST URI
 ``http://localhost/mgmt/tm/ltm/pool``

GUI Path
 ``Local Traffic --> Pools``

REST Kind
 ``tm:ltm:pools:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource
from f5.sdk_exception import F5SDKError

class MemberStateAlwaysRequiredOnUpdate(F5SDKError):
 pass

[docs]class Pools(Collection):
 """BigIP LTM pool collection"""
 def __init__(self, ltm):
 super(Pools, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Pool]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:pool:poolstate': Pool}

[docs]class Pool(Resource):
 """BigIP LTM pool resource"""
 def __init__(self, pool_s):
 super(Pool, self).__init__(pool_s)
 self._meta_data['required_json_kind'] = 'tm:ltm:pool:poolstate'
 self._meta_data['attribute_registry'] = {
 'tm:ltm:pool:memberscollectionstate': Members_s
 }

[docs]class Members_s(Collection):
 """BigIP LTM pool members sub-collection"""
 def __init__(self, pool):
 super(Members_s, self).__init__(pool)
 self._meta_data['allowed_lazy_attributes'] = [Members]
 self._meta_data['required_json_kind'] =\
 'tm:ltm:pool:members:memberscollectionstate'
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:pool:members:membersstate': Members}

[docs]class Members(Resource):
 """BigIP LTM pool members sub-collection resource"""
 def __init__(self, members_s):
 super(Members, self).__init__(members_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:pool:members:membersstate'
 self._meta_data['required_creation_parameters'].update(('partition',))

[docs] def update(self, **kwargs):
 """Call this to change the configuration of the service on the device.

 This method uses HTTP PUT alter the service state on the device.

 The attributes of the instance will be packaged as a dictionary. That
 dictionary will be updated with kwargs. It is then submitted as JSON
 to the device. Various edge cases are handled:

 * read-only attributes that are unchangeable are removed
 * If ``fqdn`` is in the kwargs or set as an attribute, removes the
 ``autopopulate`` and ``addressFamily`` keys from it if there.

 :param state=: state value or :obj:`None` required.
 :param kwargs: keys and associated values to alter on the device

 """
 try:
 state = kwargs.pop('state')
 except KeyError:
 error_message = 'You must supply a value to the "state"' +\
 ' parameter if you do not wish to change the state then' +\
 ' pass "state=None".'
 raise MemberStateAlwaysRequiredOnUpdate(error_message)
 if state is None:
 self.__dict__.pop(u'state', '')
 else:
 self.state = state
 # This is an example implementation of read-only params
 self.__dict__.pop(u'ephemeral', '')
 self.__dict__.pop(u'address', '')
 self._update(**kwargs)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/monitor.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.monitor

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP LTM monitor submodule.

REST URI
 ``http://localhost/mgmt/tm/ltm/monitors/``

GUI Path
 ``Local Traffic --> Monitors``

REST Kind
 ``tm:ltm:monitors*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import OrganizingCollection
from f5.bigip.resource import Resource

class Monitor(OrganizingCollection):
 def __init__(self, ltm):
 super(Monitor, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [
 Https,
 Https_s,
 Diameters,
 Dns_s,
 Externals,
 Firepass_s,
 Ftps,
 Gateway_Icmps,
 Icmps,
 Imaps,
 Inbands,
 Ldaps,
 Module_Scores,
 Mssqls,
 Mysqls,
 Nntps,
 Nones,
 Oracles,
 Pop3s,
 Postgresqls,
 Radius_s,
 Radius_Accountings,
 Real_Servers,
 Rpcs,
 Sasps,
 Scripteds,
 Sips,
 Smbs,
 Smtps,
 Snmp_Dcas,
 Snmp_Dca_Bases,
 Soaps,
 Tcps,
 Tcp_Echos,
 Tcp_Half_Opens,
 Udps,
 Virtual_Locations,
 Waps,
 Wmis]

[docs]class Https(Collection):
 """BigIP Http monitor collection."""
 def __init__(self, monitor):
 super(Https, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Http]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:http:httpstate': Http}

class UpdateMonitorMixin(object):
 def update(self, **kwargs):
 """Change the configuration of the resource on the device.

 This method uses Http PUT alter the service state on the device.

 The attributes of the instance will be packaged as a dictionary. That
 dictionary will be updated with kwargs. It is then submitted as JSON
 to the device. Various edge cases are handled:

 * read-only attributes that are unchangeable are removed
 * ``defaultsFrom`` attribute is removed from JSON before the PUT

 :param kwargs: keys and associated values to alter on the device

 """
 self.__dict__.pop(u'defaultsFrom', '')
 self._update(**kwargs)

[docs]class Http(UpdateMonitorMixin, Resource):
 """BigIP Http monitor resource."""
 def __init__(self, https):
 super(Http, self).__init__(https)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:http:httpstate'

[docs]class Https_s(Collection):
 """BigIP Https monitor collection."""
 def __init__(self, monitor):
 super(Https_s, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [HttpS]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:https:httpsstate': HttpS}

[docs]class HttpS(UpdateMonitorMixin, Resource):
 """BigIP Https monitor resource."""
 def __init__(self, https_s):
 super(HttpS, self).__init__(https_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:https:httpsstate'

[docs]class Diameters(Collection):
 """BigIP diameter monitor collection."""
 def __init__(self, monitor):
 super(Diameters, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Diameter]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:diameter:diameterstate': Diameter}

[docs]class Diameter(UpdateMonitorMixin, Resource):
 """BigIP diameter monitor resource."""
 def __init__(self, diameters):
 super(Diameter, self).__init__(diameters)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:diameter:diameterstate'

[docs]class Dns_s(Collection):
 """BigIP Dns monitor collection."""
 def __init__(self, monitor):
 super(Dns_s, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Dns]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:dns:dnsstate': Dns}

[docs]class Dns(UpdateMonitorMixin, Resource):
 """BigIP Dns monitor resource."""
 def __init__(self, dns_s):
 super(Dns, self).__init__(dns_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:dns:dnsstate'
 self._meta_data['required_creation_parameters'].update(('qname',))

[docs]class Externals(Collection):
 """BigIP external monitor collection."""
 def __init__(self, monitor):
 super(Externals, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [External]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:external:externalstate': External}

[docs]class External(UpdateMonitorMixin, Resource):
 """BigIP external monitor resrouce."""
 def __init__(self, externals):
 super(External, self).__init__(externals)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:external:externalstate'

[docs]class Firepass_s(Collection):
 """BigIP Fire Pass monitor collection."""
 def __init__(self, monitor):
 super(Firepass_s, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Firepass]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:firepass:firepassstate': Firepass}

[docs]class Firepass(UpdateMonitorMixin, Resource):
 """BigIP external monitor resource."""
 def __init__(self, firepass_s):
 super(Firepass, self).__init__(firepass_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:firepass:firepassstate'

[docs]class Ftps(Collection):
 """BigIP Ftp monitor collection."""
 def __init__(self, monitor):
 super(Ftps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Ftp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:ftp:ftpstate': Ftp}

[docs]class Ftp(UpdateMonitorMixin, Resource):
 """BigIP Ftp monitor resource."""
 def __init__(self, ftps):
 super(Ftp, self).__init__(ftps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:ftp:ftpstate'

[docs]class Gateway_Icmps(Collection):
 """BigIP Gateway Icmp monitor collection."""
 def __init__(self, monitor):
 super(Gateway_Icmps, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Gateway_Icmp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:gateway-icmp:gateway-icmpstate': Gateway_Icmp}

[docs]class Gateway_Icmp(UpdateMonitorMixin, Resource):
 """BigIP Gateway Icmp monitor resource."""
 def __init__(self, gateway_icmps):
 super(Gateway_Icmp, self).__init__(gateway_icmps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:gateway-icmp:gateway-icmpstate'

[docs]class Icmps(Collection):
 """BigIP Icmp monitor collection."""
 def __init__(self, monitor):
 super(Icmps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Icmp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:icmp:icmpstate': Icmp}

[docs]class Icmp(UpdateMonitorMixin, Resource):
 """BigIP Icmp monitor resource."""
 def __init__(self, icmps):
 super(Icmp, self).__init__(icmps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:icmp:icmpstate'

[docs]class Imaps(Collection):
 """BigIP Imap monitor collection."""
 def __init__(self, monitor):
 super(Imaps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Imap]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:imap:imapstate': Imap}

[docs]class Imap(UpdateMonitorMixin, Resource):
 """BigIP Imap monitor resource."""
 def __init__(self, imaps):
 super(Imap, self).__init__(imaps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:imap:imapstate'

[docs]class Inbands(Collection):
 """BigIP in band monitor collection."""
 def __init__(self, monitor):
 super(Inbands, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Inband]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:inband:inbandstate': Inband}

[docs]class Inband(UpdateMonitorMixin, Resource):
 """BigIP in band monitor resource."""
 def __init__(self, inbands):
 super(Inband, self).__init__(inbands)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:inband:inbandstate'

[docs]class Ldaps(Collection):
 """BigIP Ldap monitor collection."""
 def __init__(self, monitor):
 super(Ldaps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Ldap]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:ldap:ldapstate': Ldap}

[docs]class Ldap(UpdateMonitorMixin, Resource):
 """BigIP Ldap monitor resource."""
 def __init__(self, ldaps):
 super(Ldap, self).__init__(ldaps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:ldap:ldapstate'

[docs]class Module_Scores(Collection):
 """BigIP module scores monitor collection."""
 def __init__(self, monitor):
 super(Module_Scores, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Module_Score]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:module-score:module-scorestate': Module_Score}

[docs]class Module_Score(UpdateMonitorMixin, Resource):
 """BigIP module scores monitor resource."""
 def __init__(self, gateway_icmps):
 super(Module_Score, self).__init__(gateway_icmps)
 self._meta_data['required_creation_parameters'].update(
 ('snmp-ip-address',))
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:module-score:module-scorestate'

[docs]class Mysqls(Collection):
 """BigIP MySQL monitor collection."""
 def __init__(self, monitor):
 super(Mysqls, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Mysql]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:mysql:mysqlstate': Mysql}

[docs]class Mysql(UpdateMonitorMixin, Resource):
 """BigIP MySQL monitor resource."""
 def __init__(self, mysqls):
 super(Mysql, self).__init__(mysqls)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:mysql:mysqlstate'

[docs]class Mssqls(Collection):
 """BigIP Mssql monitor collection."""
 def __init__(self, monitor):
 super(Mssqls, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Mssql]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:mssql:mssqlstate': Mssql}

[docs]class Mssql(UpdateMonitorMixin, Resource):
 """BigIP Mssql monitor resource."""
 def __init__(self, mssqls):
 super(Mssql, self).__init__(mssqls)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:mssql:mssqlstate'

[docs]class Nntps(Collection):
 """BigIP Nntps monitor collection."""
 def __init__(self, monitor):
 super(Nntps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Nntp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:nntp:nntpstate': Nntp}

[docs]class Nntp(UpdateMonitorMixin, Resource):
 """BigIP Nntps monitor resource."""
 def __init__(self, nntps):
 super(Nntp, self).__init__(nntps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:nntp:nntpstate'

[docs]class Nones(Collection):
 """BigIP None monitor collection."""
 def __init__(self, monitor):
 super(Nones, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [NONE]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:none:nonestate': NONE}

[docs]class NONE(UpdateMonitorMixin, Resource):
 """BigIP None monitor resource."""
 def __init__(self, nones):
 super(NONE, self).__init__(nones)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:none:nonestate'

[docs]class Oracles(Collection):
 """BigIP Oracle monitor collection."""
 def __init__(self, monitor):
 super(Oracles, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Oracle]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:oracle:oraclestate': Oracle}

[docs]class Oracle(UpdateMonitorMixin, Resource):
 """BigIP Oracle monitor resource."""
 def __init__(self, oracles):
 super(Oracle, self).__init__(oracles)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:oracle:oraclestate'

[docs]class Pop3s(Collection):
 """BigIP Pop3 monitor collection."""
 def __init__(self, monitor):
 super(Pop3s, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Pop3]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:pop3:pop3state': Pop3}

[docs]class Pop3(UpdateMonitorMixin, Resource):
 """BigIP Pop3 monitor resource."""
 def __init__(self, pop3s):
 super(Pop3, self).__init__(pop3s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:pop3:pop3state'

[docs]class Postgresqls(Collection):
 """BigIP PostGRES SQL monitor collection."""
 def __init__(self, monitor):
 super(Postgresqls, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Postgresql]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:postgresql:postgresqlstate': Postgresql}

[docs]class Postgresql(UpdateMonitorMixin, Resource):
 """BigIP PostGRES SQL monitor resource."""
 def __init__(self, postgresqls):
 super(Postgresql, self).__init__(postgresqls)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:postgresql:postgresqlstate'

[docs]class Radius_s(Collection):
 """BigIP radius monitor collection."""
 def __init__(self, monitor):
 super(Radius_s, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Radius]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:radius:radiusstate': Radius}

[docs]class Radius(UpdateMonitorMixin, Resource):
 """BigIP radius monitor resource."""
 def __init__(self, radius_s):
 super(Radius, self).__init__(radius_s)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:radius:radiusstate'

[docs]class Radius_Accountings(Collection):
 """BigIP radius accounting monitor collection."""
 def __init__(self, monitor):
 super(Radius_Accountings, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Radius_Accounting]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:radius-accounting:radius-accountingstate':
 Radius_Accounting}

[docs]class Radius_Accounting(UpdateMonitorMixin, Resource):
 """BigIP radius accounting monitor resource."""
 def __init__(self, radius_accountings):
 super(Radius_Accounting, self).__init__(radius_accountings)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:radius-accounting:radius-accountingstate'

[docs]class Real_Servers(Collection):
 """BigIP real-server monitor collection."""
 def __init__(self, monitor):
 super(Real_Servers, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Real_Server]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:real-server:real-serverstate': Real_Server}

[docs]class Real_Server(UpdateMonitorMixin, Resource):
 """BigIP real-server monitor resource."""
 def __init__(self, real_servers):
 super(Real_Server, self).__init__(real_servers)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:real-server:real-serverstate'

[docs] def update(self, **kwargs):
 """Change the configuration of the resource on the device.

 This method uses Http PUT alter the service state on the device.

 The attributes of the instance will be packaged as a dictionary. That
 dictionary will be updated with kwargs. It is then submitted as JSON
 to the device. Various edge cases are handled:

 * read-only attributes that are unchangeable are removed
 * ``tmCommand`` attribute removed prior to PUT
 * ``agent`` attribute removed prior to PUT
 * ``post`` attribute removed prior to PUT

 :param kwargs: keys and associated values to alter on the device

 """
 self.__dict__.pop('tmCommand', '')
 self.__dict__.pop('agent', '')
 self.__dict__.pop('method', '')
 super(Real_Server, self).update(**kwargs)

[docs]class Rpcs(Collection):
 """BigIP Rpc monitor collection."""
 def __init__(self, monitor):
 super(Rpcs, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Rpc]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:rpc:rpcstate': Rpc}

[docs]class Rpc(UpdateMonitorMixin, Resource):
 """BigIP Rpc monitor resource."""
 def __init__(self, rpcs):
 super(Rpc, self).__init__(rpcs)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:rpc:rpcstate'

[docs]class Sasps(Collection):
 """BigIP Sasp monitor collection."""
 def __init__(self, monitor):
 super(Sasps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Sasp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:sasp:saspstate': Sasp}

[docs]class Sasp(UpdateMonitorMixin, Resource):
 """BigIP Sasp monitor resource."""
 def __init__(self, sasps):
 super(Sasp, self).__init__(sasps)
 self._meta_data['required_creation_parameters'].update(
 ('primaryAddress',))
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:sasp:saspstate'

[docs]class Scripteds(Collection):
 """BigIP scripted monitor collection."""
 def __init__(self, monitor):
 super(Scripteds, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Scripted]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:scripted:scriptedstate': Scripted}

[docs]class Scripted(UpdateMonitorMixin, Resource):
 """BigIP scripted monitor resource."""
 def __init__(self, scripteds):
 super(Scripted, self).__init__(scripteds)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:scripted:scriptedstate'

[docs]class Sips(Collection):
 """BigIP Sip monitor collection."""
 def __init__(self, monitor):
 super(Sips, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Sip]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:sip:sipstate': Sip}

[docs]class Sip(UpdateMonitorMixin, Resource):
 """BigIP Sip monitor resource."""
 def __init__(self, sips):
 super(Sip, self).__init__(sips)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:sip:sipstate'

[docs]class Smbs(Collection):
 """BigIP Smb monitor collection."""
 def __init__(self, monitor):
 super(Smbs, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Smb]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:smb:smbstate': Smb}

[docs]class Smb(UpdateMonitorMixin, Resource):
 """BigIP Smb monitor resource."""
 def __init__(self, smbs):
 super(Smb, self).__init__(smbs)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:smb:smbstate'

[docs]class Smtps(Collection):
 """BigIP Smtp monitor collection."""
 def __init__(self, monitor):
 super(Smtps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Smtp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:smtp:smtpstate': Smtp}

[docs]class Smtp(UpdateMonitorMixin, Resource):
 """BigIP Smtp monitor resource."""
 def __init__(self, smtps):
 super(Smtp, self).__init__(smtps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:smtp:smtpstate'

[docs]class Snmp_Dcas(Collection):
 """BigIP SNMP DCA monitor collection."""
 def __init__(self, monitor):
 super(Snmp_Dcas, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Snmp_Dca]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:snmp-dca:snmp-dcastate': Snmp_Dca}

[docs]class Snmp_Dca(UpdateMonitorMixin, Resource):
 """BigIP SNMP DCA monitor resource."""
 def __init__(self, snmp_dcas):
 super(Snmp_Dca, self).__init__(snmp_dcas)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:snmp-dca:snmp-dcastate'

[docs]class Snmp_Dca_Bases(Collection):
 """BigIP SNMP DCA bases monitor collection."""
 def __init__(self, monitor):
 super(Snmp_Dca_Bases, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Snmp_Dca_Base]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:snmp-dca-base:snmp-dca-basestate': Snmp_Dca_Base}

[docs]class Snmp_Dca_Base(UpdateMonitorMixin, Resource):
 """BigIP SNMP DCA monitor resource."""
 def __init__(self, snmp_dca_bases):
 super(Snmp_Dca_Base, self).__init__(snmp_dca_bases)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:snmp-dca-base:snmp-dca-basestate'

[docs]class Soaps(Collection):
 """BigIP Soap monitor collection."""
 def __init__(self, monitor):
 super(Soaps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Soap]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:soap:soapstate': Soap}

[docs]class Soap(UpdateMonitorMixin, Resource):
 """BigIP Soap monitor resource."""
 def __init__(self, soaps):
 super(Soap, self).__init__(soaps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:soap:soapstate'

[docs]class Tcps(Collection):
 """BigIP Tcp monitor collection."""
 def __init__(self, monitor):
 super(Tcps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Tcp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:tcp:tcpstate': Tcp}

[docs]class Tcp(UpdateMonitorMixin, Resource):
 """BigIP Tcp monitor resource."""
 def __init__(self, tcps):
 super(Tcp, self).__init__(tcps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:tcp:tcpstate'

[docs]class Tcp_Echos(Collection):
 """BigIP Tcp echo monitor collection."""
 def __init__(self, monitor):
 super(Tcp_Echos, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Tcp_Echo]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:tcp-echo:tcp-echostate': Tcp_Echo}

[docs]class Tcp_Echo(UpdateMonitorMixin, Resource):
 """BigIP Tcp echo monitor resource."""
 def __init__(self, tcp_echos):
 super(Tcp_Echo, self).__init__(tcp_echos)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:tcp-echo:tcp-echostate'

[docs]class Tcp_Half_Opens(Collection):
 """BigIP Tcp half open monitor collection."""
 def __init__(self, monitor):
 super(Tcp_Half_Opens, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Tcp_Half_Open]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:tcp-half-open:tcp-half-openstate': Tcp_Half_Open}

[docs]class Tcp_Half_Open(UpdateMonitorMixin, Resource):
 """BigIP Tcp half open monitor resource."""
 def __init__(self, tcp_half_opens):
 super(Tcp_Half_Open, self).__init__(tcp_half_opens)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:tcp-half-open:tcp-half-openstate'

[docs]class Udps(Collection):
 """BigIP Udp monitor collection."""
 def __init__(self, monitor):
 super(Udps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Udp]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:udp:udpstate': Udp}

[docs]class Udp(UpdateMonitorMixin, Resource):
 """BigIP Udp monitor resource."""
 def __init__(self, udps):
 super(Udp, self).__init__(udps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:udp:udpstate'

[docs]class Virtual_Locations(Collection):
 """BigIP virtual-locations monitor collection."""
 def __init__(self, monitor):
 super(Virtual_Locations, self).__init__(monitor)
 fixed = self._meta_data['uri'].replace('_', '-')
 self._meta_data['uri'] = fixed
 self._meta_data['allowed_lazy_attributes'] = [Virtual_Location]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:virtual-location:virtual-locationstate':
 Virtual_Location}

[docs]class Virtual_Location(UpdateMonitorMixin, Resource):
 """BigIP virtual-locations monitor resource."""
 def __init__(self, virtual_locations):
 super(Virtual_Location, self).__init__(virtual_locations)
 self._meta_data['required_creation_parameters'].update(
 ('pool',))
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:virtual-location:virtual-locationstate'

[docs]class Waps(Collection):
 """BigIP Wap monitor collection."""
 def __init__(self, monitor):
 super(Waps, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Wap]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:wap:wapstate': Wap}

[docs]class Wap(UpdateMonitorMixin, Resource):
 """BigIP Wap monitor resource."""
 def __init__(self, waps):
 super(Wap, self).__init__(waps)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:wap:wapstate'

[docs]class Wmis(Collection):
 """BigIP Wmi monitor collection."""
 def __init__(self, monitor):
 super(Wmis, self).__init__(monitor)
 self._meta_data['allowed_lazy_attributes'] = [Wmi]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:monitor:wmi:wmistate': Wmi}

[docs]class Wmi(UpdateMonitorMixin, Resource):
 """BigIP Wmi monitor resource."""
 def __init__(self, wmis):
 super(Wmi, self).__init__(wmis)
 self._meta_data['required_json_kind'] =\
 'tm:ltm:monitor:wmi:wmistate'
 self._meta_data['read_only_attributes'] =\
 ['agent', 'post', 'method']

[docs] def update(self, **kwargs):
 """Change the configuration of the resource on the device.

 This method uses Http PUT alter the service state on the device.

 The attributes of the instance will be packaged as a dictionary. That
 dictionary will be updated with kwargs. It is then submitted as JSON
 to the device. Various edge cases are handled:

 * read-only attributes that are unchangeable are removed
 * ``agent`` attribute removed prior to PUT
 * ``post`` attribute removed prior to PUT
 * ``method`` attribute removed prior to PUT

 :param kwargs: keys and associated values to alter on the device

 """
 self.__dict__.pop('agent', '')
 self.__dict__.pop('post', '')
 self.__dict__.pop('method', '')
 super(Wmi, self).update(**kwargs)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/minus.png

_modules/f5/bigip/net/selfip.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.selfip

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Network self-ip module.

.. note::

 Self IPs path does not match their kind or URI because the string ``self``
 causes problems in Python because it is a reserved word.

REST URI
 ``http://localhost/mgmt/tm/net/self``

GUI Path
 ``Network --> Self IPs``

REST Kind
 ``tm:net:self:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Selfips(Collection):
 """BigIP network Self-IP collection

 .. note::

 The objects in the collection are actually called 'self' in
 iControlREST, but obviously this will cause problems in Python so we
 changed its name to Selfip.
 """
 def __init__(self, net):
 super(Selfips, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [Selfip]
 self._meta_data['attribute_registry'] =\
 {'tm:net:self:selfstate': Selfip}
 # Override the URI to have self instead of the constructed selfip
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + "self/"

[docs]class Selfip(Resource):
 '''BigIP Self-IP resource

 Use this object to create, refresh, update, delete, and load self ip
 configuration on the BIGIP. This requires that a
 :class:`~f5.bigip.network.vlan.VLAN` object be present on the system and
 that object's :attrib:`fullPath` be used as the VLAN name.

 The address that is used for create is a *<ipaddress>/<netmask>*. For
 example ``192.168.1.1/32``.

 .. note::

 The object is actually called ``self`` in iControlREST, but obviously
 this will cause problems in Python so we changed its name to
 ``Selfip``.
 '''
 def __init__(self, selfip_s):
 super(Selfip, self).__init__(selfip_s)
 self._meta_data['required_json_kind'] = 'tm:net:self:selfstate'
 self._meta_data['required_creation_parameters'].update(
 ('address', 'vlan'))

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/f5/bigip/net/arp.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.arp

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Network ARP module.

REST URI
 ``http://localhost/mgmt/tm/net/arp``

GUI Path
 ``Network --> ARP``

REST Kind
 ``tm:net:arp:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Arps(Collection):
 """BigIP network ARP collection"""
 def __init__(self, net):
 super(Arps, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [Arp]
 self._meta_data['attribute_registry'] = {
 'tm:net:arp:arpstate': Arp
 }

[docs]class Arp(Resource):
 """BigIP network ARP resource"""
 def __init__(self, arp_s):
 super(Arp, self).__init__(arp_s)
 self._meta_data['required_json_kind'] = 'tm:net:arp:arpstate'
 self._meta_data['required_creation_parameters'].update(
 ('partition', 'name', 'ipAddress', 'macAddress')
)
 self._meta_data['read_only_attributes'].append('ipAddress')

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/net/interface.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.interface

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Network interface module.

REST URI
 ``http://localhost/mgmt/tm/net/interface``

GUI Path
 ``Network --> Interfaces``

REST Kind
 ``tm:net:interface:*``
"""

from f5.bigip.mixins import ExclusiveAttributesMixin
from f5.bigip.resource import Collection
from f5.bigip.resource import Resource
from f5.bigip.resource import UnsupportedOperation

[docs]class Interfaces(Collection):
 """BigIP network interface collection"""
 def __init__(self, net):
 super(Interfaces, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [Interface]
 self._meta_data['attribute_registry'] = {
 'tm:net:interface:interfacestate': Interface
 }

[docs]class Interface(Resource, ExclusiveAttributesMixin):
 """BigIP network interface collection"""
 def __init__(self, interface_s):
 super(Interface, self).__init__(interface_s)
 self._meta_data['required_json_kind'] =\
 'tm:net:interface:interfacestate'
 self._meta_data['exclusive_attributes'].append(('enabled', 'disabled'))

[docs] def create(self, **kwargs):
 """Create is not supported for interfaces.

 :raises: :exc:`~f5.bigip.resource.UnsupportedOperation`
 """
 raise UnsupportedOperation(
 "BigIP interfaces cannot be created by users")

[docs] def delete(self):
 """Delete is not supported for interfaces.

 :raises: :exc:`~f5.bigip.resource.UnsupportedOperation`
 """
 raise UnsupportedOperation(
 "BigIP interfaces cannot be deleted by users")

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

userguide/endpoints/endpoint_table_ltm_pool_members_s.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

		Endpoint
		http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members

		Kind
		tm:ltm:pool:members:memberscollectionstate

		Type
		subcollection

		Class
		f5.bigip.ltm.pool.Members_s

		Instantiation
		members = pool.members_s

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/net/route.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.route

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Network route module.

REST URI
 ``http://localhost/mgmt/tm/net/route``

GUI Path
 ``Network --> Routes``

REST Kind
 ``tm:net:route:*``
"""

from f5.bigip.mixins import ExclusiveAttributesMixin
from f5.bigip.resource import Collection
from f5.bigip.resource import MissingRequiredCreationParameter
from f5.bigip.resource import Resource

[docs]class Routes(Collection):
 """BigIP network route collection"""
 def __init__(self, net):
 super(Routes, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [Route]
 self._meta_data['attribute_registry'] = {
 'tm:net:route:routestate': Route
 }

[docs]class Route(Resource, ExclusiveAttributesMixin):
 """BigIP network route resource"""
 def __init__(self, route_s):
 super(Route, self).__init__(route_s)
 self._meta_data['required_json_kind'] = 'tm:net:route:routestate'
 self._meta_data['read_only_attributes'].append('network')
 self._meta_data['required_creation_parameters'].update(
 ('partition', 'name', 'network'))
 self._meta_data['exclusive_attributes'].append(
 ('blackhole', 'gw', 'tmInterface', 'pool'))

[docs] def create(self, **kwargs):
 '''Create a Route on the BigIP and the associated python object.

 One of the following gateways is required when creating the route
 objects: ``blackhole``, ``gw``, ``tmInterface``, ``pool``.

 :params kwargs: keyword arguments passed in from create call
 :raises: KindTypeMismatch
 :raises: MissingRequiredCreationParameter
 :raises: HTTPError
 :returns: Python Route object
 '''
 # We need to check that we have one of the available gateways set
 # when we create. This isn't exactly the same as
 # required_creation_parameters because it needs to be one of the
 # gateways in the list.
 gateways = ['blackhole', 'gw', 'tmInterface', 'pool']
 if not [k for k in kwargs.keys() if k in gateways]:
 raise MissingRequiredCreationParameter(
 "One of %s gateways is required." % gateways
)
 return self._create(**kwargs)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_modules/f5/bigip/ltm/node.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.node

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Local Traffic Manager (LTM) node module.

REST URI
 ``http://localhost/mgmt/tm/ltm/node``

GUI Path
 ``Local Traffic --> Nodes``

REST Kind
 ``tm:ltm:node:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Nodes(Collection):
 """BigIP LTM node collection"""
 def __init__(self, ltm):
 super(Nodes, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Node]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:node:nodestate': Node}

[docs]class Node(Resource):
 """BigIP LTM node resource"""
 def __init__(self, nodes):
 super(Node, self).__init__(nodes)
 self._meta_data['required_json_kind'] = 'tm:ltm:node:nodestate'
 self._meta_data['required_creation_parameters'].update(
 ('partition', 'address',)
)
 self._meta_data['read_only_attributes'].append('ephemeral')
 self._meta_data['read_only_attributes'].append('state')
 self._meta_data['read_only_attributes'].append('address')

[docs] def update(self, **kwargs):
 """Call this to change the configuration of the service on the device.

 This method uses HTTP PUT alter the service state on the device.

 The attributes of the instance will be packaged as a dictionary. That
 dictionary will be updated with kwargs. It is then submitted as JSON
 to the device. Various edge cases are handled:

 * read-only attributes that are unchangeable are removed
 * If ``fqdn`` is in the kwargs or set as an attribute, removes the
 ``autopopulate`` and ``addressFamily`` keys from it if there.

 :param kwargs: keys and associated values to alter on the device

 """
 # Is autopopulate in kwargs?
 if 'fqdn' in kwargs:
 kwargs['fqdn'].pop('autopopulate')
 kwargs['fqdn'].pop('addressFamily')
 if 'fqdn' in self.__dict__:
 self.__dict__['fqdn'].pop('autopopulate')
 self.__dict__['fqdn'].pop('addressFamily')
 return self._update(**kwargs)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/ltm/nat.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.ltm »

 Source code for f5.bigip.ltm.nat

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
"""BigIP Local Traffic Manager (LTM) Nat module.

REST URI
 ``http://localhost/mgmt/tm/ltm/nat``

GUI Path
 ``Local Traffic --> Nat``

REST Kind
 ``tm:ltm:nat:*``
"""

from f5.bigip.mixins import ExclusiveAttributesMixin
from f5.bigip.resource import Collection
from f5.bigip.resource import MissingRequiredCreationParameter
from f5.bigip.resource import Resource

[docs]class Nats(Collection):
 """BigIP LTM Nat collection object"""
 def __init__(self, ltm):
 super(Nats, self).__init__(ltm)
 self._meta_data['allowed_lazy_attributes'] = [Nat]
 self._meta_data['attribute_registry'] =\
 {'tm:ltm:nat:natstate': Nat}

[docs]class Nat(Resource, ExclusiveAttributesMixin):
 """BigIP LTM Nat collection resource"""
 def __init__(self, nat_s):
 super(Nat, self).__init__(nat_s)
 self._meta_data['required_creation_parameters'].update(
 ('originatingAddress', 'translationAddress', 'partition'))
 self._meta_data['required_json_kind'] = 'tm:ltm:nat:natstate'
 self._meta_data['exclusive_attributes'].append(('enable', 'disable'))

[docs] def create(self, **kwargs):
 """Create the resource on the BigIP.

 Uses HTTP POST to the `collection` URI to create a resource associated
 with a new unique URI on the device.

 ..
 If you do a create with inheritedTrafficGroup set to 'false' you
 must also have a trafficGroup. This pattern generalizes like so:
 If the presence of a param implies an additional required param,
 then simply
 self._meta_data['required_creation_params'].update(IMPLIED),
 before the call to self._create(**kwargs), wherein req params are
 checked.

 We refer to this property as "implied-required parameters" because
 the presence of one parameter, or parameter value (e.g.
 inheritedTrafficGroup), implies that another parameter is required.

 .. note::
 If you are creating with ``inheritedTrafficGroup` set to
 :obj:`False` you just also have a `trafficGroup`.

 :param kwargs: All the key-values needed to create the resource
 :returns: ``self`` - A python object that represents the object's
 configuration and state on the BigIP.

 """
 itg = kwargs.get('inheritedTrafficGroup', None)
 if itg and itg == 'false':
 self._meta_data['required_creation_parameters'].\
 update(('trafficGroup',))
 try:
 if not kwargs['trafficGroup']:
 raise MissingRequiredCreationParameter(
 "trafficGroup must not be falsey but it's: %r"
 % kwargs['trafficGroup'])
 except KeyError:
 pass
 kwargs = self._endis_able(kwargs)
 self._create(**kwargs)
 return self

 def _endis_able(self, config_dict):
 if 'enabled' in config_dict and not config_dict['enabled']:
 config_dict['disabled'] = True
 elif 'disabled' in config_dict and not config_dict['disabled']:
 config_dict['enabled'] = True
 return config_dict

 def update(self, **kwargs):
 # This is an example implementation of read-only params
 stash_translation_address = self.__dict__.pop('translationAddress')
 if 'enabled' in self.__dict__ and 'enabled' not in kwargs:
 kwargs['enabled'] = self.__dict__.pop('enabled')
 elif 'disabled' in self.__dict__ and 'disabled' not in kwargs:
 kwargs['disabled'] = self.__dict__.pop('disabled')
 kwargs = self._endis_able(kwargs)
 self._update(**kwargs)
 self.__dict__['translationAddress'] = stash_translation_address

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/down.png

_modules/f5/bigip/cm/device.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.cm »

 Source code for f5.bigip.cm.device

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
"""BigIP cluster device submodule

REST URI
 ``http://localhost/mgmt/tm/cm/device/``

GUI Path
 ``Device Management --> Devices``

REST Kind
 ``tm:cm:device:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Devices(Collection):
 """BigIP cluster devices collection.

 """
 def __init__(self, cm):
 super(Devices, self).__init__(cm)
 self._meta_data['allowed_lazy_attributes'] = [Device]
 self._meta_data['attribute_registry'] =\
 {'tm:cm:device:devicestate': Device}

[docs]class Device(Resource):
 """BigIP cluster device object.

 """
 def __init__(self, device_s):
 super(Device, self).__init__(device_s)
 self._meta_data['required_json_kind'] = 'tm:cm:device:devicestate'
 self._meta_data['required_creation_parameters'].update(('partition',))

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/common/iapp_parser.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for f5.common.iapp_parser

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import re

from f5.sdk_exception import F5SDKError

[docs]class IappParser(object):

 template_sections = [
 u'presentation',
 u'implementation',
 u'html-help',
 u'role-acl'
]

 tcl_list_for_attr_re = '{(\s*\w+\s*)+}'
 tcl_list_for_section_re = '(\s*\w+\s*)+'
 section_map = {u'html-help': u'htmlHelp', u'role-acl': u'roleAcl'}
 attr_map = {u'requires-modules': u'requiresModules'}
 sections_not_required = [u'html-help', u'role-acl']
 tcl_list_patterns = {
 u'requires-modules': tcl_list_for_attr_re,
 u'role-acl': tcl_list_for_section_re
 }
 template_attrs = [u'description', u'partition', u'requires-modules']

 def __init__(self, template_str):
 '''Initialize class.

 :param template_str: string of iapp template file
 :raises: EmptyTemplateException
 '''

 if template_str:
 self.template_str = unicode(template_str)
 else:
 raise EmptyTemplateException('Template empty or None value.')

 def _get_section_end_index(self, section, section_start):
 '''Get end of section's content.

 In the loop to match braces, we must not count curly braces that are
 within a doubly quoted string.

 :param section: string name of section
 :param section_start: integer index of section's beginning
 :return: integer index of section's end
 :raises: CurlyBraceMismatchException
 '''

 brace_count = 0
 in_quote = False
 for index, char in enumerate(self.template_str[section_start:]):
 if char == '"' and not in_quote:
 in_quote = True
 elif char == '"' and in_quote:
 in_quote = False

 if char == u'{' and not in_quote:
 brace_count += 1
 elif char == u'}' and not in_quote:
 brace_count -= 1

 if brace_count is 0:
 return index + section_start

 if brace_count is not 0:
 raise CurlyBraceMismatchException(
 'Curly braces mismatch in section %s.' % section
)

 def _get_section_start_index(self, section):
 '''Get start of a section's content.

 :param section: string name of section
 :return: integer index of section's beginning
 :raises: NonextantSectionException
 '''

 sec_start_re = '%s\s*\{' % section

 found = re.search(sec_start_re, self.template_str)
 if found:
 return found.end() - 1

 raise NonextantSectionException(
 'Section %s not found in template' % section
)

 def _get_template_name(self):
 '''Find template name.

 :returns: string of template name
 :raises: NonextantTemplateNameException
 '''

 start_pattern = 'sys application template\s+\w+\s*\{'

 template_start = re.search(start_pattern, self.template_str)
 if template_start:
 split_start = template_start.group(0).split()
 if split_start[3][-1:] == u'{':
 split_start[3] = split_start[3][:-1]
 return split_start[3]

 raise NonextantTemplateNameException('Template name not found.')

 def _get_template_attr(self, attr):
 '''Find the attribute value for a specific attribute.

 :param attr: string of attribute name
 :returns: string of attribute value
 '''

 attr_re = '%s\s+.*' % attr

 attr_found = re.search(attr_re, self.template_str)
 if attr_found:
 attr_value = attr_found.group(0).replace(attr, '', 1)
 return attr_value.strip()

 def _add_sections(self):
 '''Add the found and required sections to the templ_dict.'''
 for section in self.template_sections:
 try:
 sec_start = self._get_section_start_index(section)
 except NonextantSectionException:
 if section in self.sections_not_required:
 continue
 raise
 sec_end = self._get_section_end_index(section, sec_start)
 section_value = self.template_str[sec_start+1:sec_end].strip()
 section, section_value = self._transform_key_value(
 section,
 section_value,
 self.section_map
)
 self.templ_dict['actions']['definition'][section] = section_value
 self.template_str = self.template_str[:sec_start+1] + \
 self.template_str[sec_end:]

 def _add_attrs(self):
 '''Add the found and required attrs to the templ_dict.'''
 for attr in self.template_attrs:
 attr_value = self._get_template_attr(attr)

 if not attr_value:
 continue

 attr, attr_value = self._transform_key_value(
 attr,
 attr_value,
 self.attr_map
)
 self.templ_dict[attr] = attr_value

 def _parse_tcl_list(self, attr, list_str):
 '''Turns a string representation of a TCL list into a Python list.

 :param attr: string name of attribute
 :param list_str: string representation of a list
 :returns: Python list
 '''

 list_str = list_str.strip()
 if list_str[0] != '{' and list_str[-1] != '}':
 if list_str.find('none') >= 0:
 return list_str

 if not re.search(self.tcl_list_patterns[attr], list_str):
 raise MalformedTCLListException('TCL list for "%s" is malformed. '
 'If no elements are needed "none" '
 'should be used without curly '
 'braces.' % attr)

 list_str = list_str.strip('{').strip('}')
 list_str = list_str.strip()
 return list_str.split()

 def _transform_key_value(self, key, value, map_dict):
 '''Massage keys and values for iapp dict to look like JSON.

 :param key: string dictionary key
 :param value: string dictionary value
 :param map_dict: dictionary to map key names
 '''

 if key in self.tcl_list_patterns:
 value = self._parse_tcl_list(key, value)

 if key in map_dict:
 key = map_dict[key]

 return key, value

[docs] def parse_template(self):
 '''Parse the template string into a dict.

 Find the (large) inner sections first, save them, and remove them from
 a modified string. Then find the template attributes in the modified
 string.

 :returns: dictionary of parsed template
 '''

 self.templ_dict = {'actions': {'definition': {}}}

 self.templ_dict[u'name'] = self._get_template_name()

 self._add_sections()
 self._add_attrs()

 return self.templ_dict

[docs]class EmptyTemplateException(F5SDKError):
 pass

[docs]class CurlyBraceMismatchException(F5SDKError):
 pass

[docs]class NonextantSectionException(F5SDKError):
 pass

[docs]class NonextantTemplateNameException(F5SDKError):
 pass

[docs]class MalformedTCLListException(F5SDKError):
 pass

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/cm/device_group.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.cm »

 Source code for f5.bigip.cm.device_group

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP cluster device-group submodule

REST URI
 ``http://localhost/mgmt/tm/cm/device-group``

GUI Path
 ``Device Management --> Device Groups``

REST Kind
 ``tm:cm:device-group:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Device_Groups(Collection):
 """BigIP cluster device-groups collection."""
 def __init__(self, cm):
 super(Device_Groups, self).__init__(cm)
 endpoint = 'device-group'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + endpoint + '/'
 self._meta_data['allowed_lazy_attributes'] = [Device_Group]
 self._meta_data['attribute_registry'] =\
 {'tm:cm:device:device-groupstate': Device_Group}

[docs]class Device_Group(Resource):
 """BigIP cluster device-group resource"""
 def __init__(self, device_groups):
 super(Device_Group, self).__init__(device_groups)
 self._meta_data['read_only_attributes'].append('type')
 self._meta_data['required_creation_parameters'].update(('partition',))
 self._meta_data['required_json_kind'] =\
 'tm:cm:device-group:device-groupstate'
 self._meta_data['attribute_registry'] = {
 'tm:cm:device-group:devices:devicescollectionstate': Devices_s
 }

[docs]class Devices_s(Collection):
 """BigIP cluster devices-group devices subcollection."""
 def __init__(self, device_group):
 super(Devices_s, self).__init__(device_group)
 self._meta_data['allowed_lazy_attributes'] = [Devices]
 self._meta_data['required_json_kind'] =\
 'tm:cm:device-group:devices:devicescollectionstate'
 self._meta_data['attribute_registry'] =\
 {'tm:cm:device-group:devices:devicesstate': Devices}

[docs]class Devices(Resource):
 """BigIP cluster devices-group devices subcollection resource."""
 def __init__(self, devices_s):
 super(Devices, self).__init__(devices_s)
 self._meta_data['required_json_kind'] =\
 'tm:cm:device-group:devices:devicesstate'
 self._meta_data['required_creation_parameters'].update(('partition',))

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_modules/f5/bigip/cm/traffic_group.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 		f5.bigip.cm »

 Source code for f5.bigip.cm.traffic_group

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP cluster traffic-group submodule

REST URI
 ``http://localhost/mgmt/tm/cm/traffic-group``

GUI Path
 ``Device Management --> Traffic Groups``

REST Kind
 ``tm:cm:traffic-group:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Traffic_Groups(Collection):
 """BigIP cluster traffic-group collection"""
 def __init__(self, cm):
 super(Traffic_Groups, self).__init__(cm)
 endpoint = 'traffic-group'
 self._meta_data['uri'] =\
 self._meta_data['container']._meta_data['uri'] + endpoint + '/'
 self._meta_data['allowed_lazy_attributes'] = [Traffic_Group]
 self._meta_data['attribute_registry'] =\
 {'tm:cm:traffic-group:traffic-groupstate': Traffic_Group}

[docs]class Traffic_Group(Resource):
 """BigIP cluster traffic-group resource"""
 def __init__(self, traffic_groups):
 super(Traffic_Group, self).__init__(traffic_groups)
 self._meta_data['required_json_kind'] =\
 'tm:cm:traffic-group:traffic-groupstate'
 self._meta_data['required_creation_parameters'].update(('partition',))

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_modules/f5/common/logger.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for f5.common.logger

Copyright 2014 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import logging
import sys

[docs]class Log(object):
 @staticmethod
[docs] def debug(prefix, msg):
 Log._log('debug', prefix, msg)

 @staticmethod
[docs] def error(prefix, msg):
 Log._log('error', prefix, msg)

 @staticmethod
[docs] def crit(prefix, msg):
 Log._log('crit', prefix, msg)

 @staticmethod
[docs] def info(prefix, msg):
 Log._log('info', prefix, msg)

 @staticmethod
 def _log(level, prefix, msg):
 log_string = prefix + ': ' + msg
 log = logging.getLogger(__name__)
 out_hdlr = logging.StreamHandler(sys.stdout)
 out_hdlr.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
 log.addHandler(out_hdlr)

 if level == 'debug':
 log.debug(log_string)
 elif level == 'error':
 log.error(log_string)
 elif level == 'crit':
 log.critical(log_string)
 else:
 log.info(log_string)

 log.removeHandler(out_hdlr)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_modules/suds/client.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 Source code for suds.client

This program is free software; you can redistribute it and/or modify
it under the terms of the (LGPL) GNU Lesser General Public License as
published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library Lesser General Public License for more details at
(http://www.gnu.org/licenses/lgpl.html).
#
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
written by: Jeff Ortel (jortel@redhat.com)

"""
The I{2nd generation} service proxy provides access to web services.
See I{README.txt}
"""

import suds
import suds.metrics as metrics
from cookielib import CookieJar
from suds import *
from suds.reader import DefinitionsReader
from suds.transport import TransportError, Request
from suds.transport.https import HttpAuthenticated
from suds.servicedefinition import ServiceDefinition
from suds import sudsobject
from sudsobject import Factory as InstFactory
from sudsobject import Object
from suds.resolver import PathResolver
from suds.builder import Builder
from suds.wsdl import Definitions
from suds.cache import ObjectCache
from suds.sax.document import Document
from suds.sax.parser import Parser
from suds.options import Options
from suds.properties import Unskin
from urlparse import urlparse
from copy import deepcopy
from suds.plugin import PluginContainer
from logging import getLogger

log = getLogger(__name__)

class Client(object):
 """
 A lightweight web services client.
 I{(2nd generation)} API.
 @ivar wsdl: The WSDL object.
 @type wsdl:L{Definitions}
 @ivar service: The service proxy used to invoke operations.
 @type service: L{Service}
 @ivar factory: The factory used to create objects.
 @type factory: L{Factory}
 @ivar sd: The service definition
 @type sd: L{ServiceDefinition}
 @ivar messages: The last sent/received messages.
 @type messages: str[2]
 """
 @classmethod
 def items(cls, sobject):
 """
 Extract the I{items} from a suds object much like the
 items() method works on I{dict}.
 @param sobject: A suds object
 @type sobject: L{Object}
 @return: A list of items contained in I{sobject}.
 @rtype: [(key, value),...]
 """
 return sudsobject.items(sobject)

 @classmethod
 def dict(cls, sobject):
 """
 Convert a sudsobject into a dictionary.
 @param sobject: A suds object
 @type sobject: L{Object}
 @return: A python dictionary containing the
 items contained in I{sobject}.
 @rtype: dict
 """
 return sudsobject.asdict(sobject)

 @classmethod
 def metadata(cls, sobject):
 """
 Extract the metadata from a suds object.
 @param sobject: A suds object
 @type sobject: L{Object}
 @return: The object's metadata
 @rtype: L{sudsobject.Metadata}
 """
 return sobject.__metadata__

 def __init__(self, url, **kwargs):
 """
 @param url: The URL for the WSDL.
 @type url: str
 @param kwargs: keyword arguments.
 @see: L{Options}
 """
 options = Options()
 options.transport = HttpAuthenticated()
 self.options = options
 options.cache = ObjectCache(days=1)
 self.set_options(**kwargs)
 reader = DefinitionsReader(options, Definitions)
 self.wsdl = reader.open(url)
 plugins = PluginContainer(options.plugins)
 plugins.init.initialized(wsdl=self.wsdl)
 self.factory = Factory(self.wsdl)
 self.service = ServiceSelector(self, self.wsdl.services)
 self.sd = []
 for s in self.wsdl.services:
 sd = ServiceDefinition(self.wsdl, s)
 self.sd.append(sd)
 self.messages = dict(tx=None, rx=None)

 def set_options(self, **kwargs):
 """
 Set options.
 @param kwargs: keyword arguments.
 @see: L{Options}
 """
 p = Unskin(self.options)
 p.update(kwargs)

 def add_prefix(self, prefix, uri):
 """
 Add I{static} mapping of an XML namespace prefix to a namespace.
 This is useful for cases when a wsdl and referenced schemas make heavy
 use of namespaces and those namespaces are subject to changed.
 @param prefix: An XML namespace prefix.
 @type prefix: str
 @param uri: An XML namespace URI.
 @type uri: str
 @raise Exception: when prefix is already mapped.
 """
 root = self.wsdl.root
 mapped = root.resolvePrefix(prefix, None)
 if mapped is None:
 root.addPrefix(prefix, uri)
 return
 if mapped[1] != uri:
 raise Exception('"%s" already mapped as "%s"' % (prefix, mapped))

 def last_sent(self):
 """
 Get last sent I{soap} message.
 @return: The last sent I{soap} message.
 @rtype: L{Document}
 """
 return self.messages.get('tx')

 def last_received(self):
 """
 Get last received I{soap} message.
 @return: The last received I{soap} message.
 @rtype: L{Document}
 """
 return self.messages.get('rx')

 def clone(self):
 """
 Get a shallow clone of this object.
 The clone only shares the WSDL. All other attributes are
 unique to the cloned object including options.
 @return: A shallow clone.
 @rtype: L{Client}
 """
 class Uninitialized(Client):
 def __init__(self):
 pass
 clone = Uninitialized()
 clone.options = Options()
 cp = Unskin(clone.options)
 mp = Unskin(self.options)
 cp.update(deepcopy(mp))
 clone.wsdl = self.wsdl
 clone.factory = self.factory
 clone.service = ServiceSelector(clone, self.wsdl.services)
 clone.sd = self.sd
 clone.messages = dict(tx=None, rx=None)
 return clone

 def __str__(self):
 return unicode(self)

 def __unicode__(self):
 s = ['\n']
 build = suds.__build__.split()
 s.append('Suds (https://fedorahosted.org/suds/)')
 s.append(' version: %s' % suds.__version__)
 s.append(' %s build: %s' % (build[0], build[1]))
 for sd in self.sd:
 s.append('\n\n%s' % unicode(sd))
 return ''.join(s)

class Factory:
 """
 A factory for instantiating types defined in the wsdl
 @ivar resolver: A schema type resolver.
 @type resolver: L{PathResolver}
 @ivar builder: A schema object builder.
 @type builder: L{Builder}
 """

 def __init__(self, wsdl):
 """
 @param wsdl: A schema object.
 @type wsdl: L{wsdl.Definitions}
 """
 self.wsdl = wsdl
 self.resolver = PathResolver(wsdl)
 self.builder = Builder(self.resolver)

 def create(self, name):
 """
 create a WSDL type by name
 @param name: The name of a type defined in the WSDL.
 @type name: str
 @return: The requested object.
 @rtype: L{Object}
 """
 timer = metrics.Timer()
 timer.start()
 type = self.resolver.find(name)
 if type is None:
 raise TypeNotFound(name)
 if type.enum():
 result = InstFactory.object(name)
 for e, a in type.children():
 setattr(result, e.name, e.name)
 else:
 try:
 result = self.builder.build(type)
 except Exception, e:
 log.error("create '%s' failed", name, exc_info=True)
 raise BuildError(name, e)
 timer.stop()
 metrics.log.debug('%s created: %s', name, timer)
 return result

 def separator(self, ps):
 """
 Set the path separator.
 @param ps: The new path separator.
 @type ps: char
 """
 self.resolver = PathResolver(self.wsdl, ps)

class ServiceSelector:
 """
 The B{service} selector is used to select a web service.
 In most cases, the wsdl only defines (1) service in which access
 by subscript is passed through to a L{PortSelector}. This is also the
 behavior when a I{default} service has been specified. In cases
 where multiple services have been defined and no default has been
 specified, the service is found by name (or index) and a L{PortSelector}
 for the service is returned. In all cases, attribute access is
 forwarded to the L{PortSelector} for either the I{first} service or the
 I{default} service (when specified).
 @ivar __client: A suds client.
 @type __client: L{Client}
 @ivar __services: A list of I{wsdl} services.
 @type __services: list
 """
 def __init__(self, client, services):
 """
 @param client: A suds client.
 @type client: L{Client}
 @param services: A list of I{wsdl} services.
 @type services: list
 """
 self.__client = client
 self.__services = services

 def __getattr__(self, name):
 """
 Request to access an attribute is forwarded to the
 L{PortSelector} for either the I{first} service or the
 I{default} service (when specified).
 @param name: The name of a method.
 @type name: str
 @return: A L{PortSelector}.
 @rtype: L{PortSelector}.
 """
 default = self.__ds()
 if default is None:
 port = self.__find(0)
 else:
 port = default
 return getattr(port, name)

 def __getitem__(self, name):
 """
 Provides selection of the I{service} by name (string) or
 index (integer). In cases where only (1) service is defined
 or a I{default} has been specified, the request is forwarded
 to the L{PortSelector}.
 @param name: The name (or index) of a service.
 @type name: (int|str)
 @return: A L{PortSelector} for the specified service.
 @rtype: L{PortSelector}.
 """
 if len(self.__services) == 1:
 port = self.__find(0)
 return port[name]
 default = self.__ds()
 if default is not None:
 port = default
 return port[name]
 return self.__find(name)

 def __find(self, name):
 """
 Find a I{service} by name (string) or index (integer).
 @param name: The name (or index) of a service.
 @type name: (int|str)
 @return: A L{PortSelector} for the found service.
 @rtype: L{PortSelector}.
 """
 service = None
 if not len(self.__services):
 raise Exception, 'No services defined'
 if isinstance(name, int):
 try:
 service = self.__services[name]
 name = service.name
 except IndexError:
 raise ServiceNotFound, 'at [%d]' % name
 else:
 for s in self.__services:
 if name == s.name:
 service = s
 break
 if service is None:
 raise ServiceNotFound, name
 return PortSelector(self.__client, service.ports, name)

 def __ds(self):
 """
 Get the I{default} service if defined in the I{options}.
 @return: A L{PortSelector} for the I{default} service.
 @rtype: L{PortSelector}.
 """
 ds = self.__client.options.service
 if ds is None:
 return None
 else:
 return self.__find(ds)

class PortSelector:
 """
 The B{port} selector is used to select a I{web service} B{port}.
 In cases where multiple ports have been defined and no default has been
 specified, the port is found by name (or index) and a L{MethodSelector}
 for the port is returned. In all cases, attribute access is
 forwarded to the L{MethodSelector} for either the I{first} port or the
 I{default} port (when specified).
 @ivar __client: A suds client.
 @type __client: L{Client}
 @ivar __ports: A list of I{service} ports.
 @type __ports: list
 @ivar __qn: The I{qualified} name of the port (used for logging).
 @type __qn: str
 """
 def __init__(self, client, ports, qn):
 """
 @param client: A suds client.
 @type client: L{Client}
 @param ports: A list of I{service} ports.
 @type ports: list
 @param qn: The name of the service.
 @type qn: str
 """
 self.__client = client
 self.__ports = ports
 self.__qn = qn

 def __getattr__(self, name):
 """
 Request to access an attribute is forwarded to the
 L{MethodSelector} for either the I{first} port or the
 I{default} port (when specified).
 @param name: The name of a method.
 @type name: str
 @return: A L{MethodSelector}.
 @rtype: L{MethodSelector}.
 """
 default = self.__dp()
 if default is None:
 m = self.__find(0)
 else:
 m = default
 return getattr(m, name)

 def __getitem__(self, name):
 """
 Provides selection of the I{port} by name (string) or
 index (integer). In cases where only (1) port is defined
 or a I{default} has been specified, the request is forwarded
 to the L{MethodSelector}.
 @param name: The name (or index) of a port.
 @type name: (int|str)
 @return: A L{MethodSelector} for the specified port.
 @rtype: L{MethodSelector}.
 """
 default = self.__dp()
 if default is None:
 return self.__find(name)
 else:
 return default

 def __find(self, name):
 """
 Find a I{port} by name (string) or index (integer).
 @param name: The name (or index) of a port.
 @type name: (int|str)
 @return: A L{MethodSelector} for the found port.
 @rtype: L{MethodSelector}.
 """
 port = None
 if not len(self.__ports):
 raise Exception, 'No ports defined: %s' % self.__qn
 if isinstance(name, int):
 qn = '%s[%d]' % (self.__qn, name)
 try:
 port = self.__ports[name]
 except IndexError:
 raise PortNotFound, qn
 else:
 qn = '.'.join((self.__qn, name))
 for p in self.__ports:
 if name == p.name:
 port = p
 break
 if port is None:
 raise PortNotFound, qn
 qn = '.'.join((self.__qn, port.name))
 return MethodSelector(self.__client, port.methods, qn)

 def __dp(self):
 """
 Get the I{default} port if defined in the I{options}.
 @return: A L{MethodSelector} for the I{default} port.
 @rtype: L{MethodSelector}.
 """
 dp = self.__client.options.port
 if dp is None:
 return None
 else:
 return self.__find(dp)

class MethodSelector:
 """
 The B{method} selector is used to select a B{method} by name.
 @ivar __client: A suds client.
 @type __client: L{Client}
 @ivar __methods: A dictionary of methods.
 @type __methods: dict
 @ivar __qn: The I{qualified} name of the method (used for logging).
 @type __qn: str
 """
 def __init__(self, client, methods, qn):
 """
 @param client: A suds client.
 @type client: L{Client}
 @param methods: A dictionary of methods.
 @type methods: dict
 @param qn: The I{qualified} name of the port.
 @type qn: str
 """
 self.__client = client
 self.__methods = methods
 self.__qn = qn

 def __getattr__(self, name):
 """
 Get a method by name and return it in an I{execution wrapper}.
 @param name: The name of a method.
 @type name: str
 @return: An I{execution wrapper} for the specified method name.
 @rtype: L{Method}
 """
 return self[name]

 def __getitem__(self, name):
 """
 Get a method by name and return it in an I{execution wrapper}.
 @param name: The name of a method.
 @type name: str
 @return: An I{execution wrapper} for the specified method name.
 @rtype: L{Method}
 """
 m = self.__methods.get(name)
 if m is None:
 qn = '.'.join((self.__qn, name))
 raise MethodNotFound, qn
 return Method(self.__client, m)

class Method:
 """
 The I{method} (namespace) object.
 @ivar client: A client object.
 @type client: L{Client}
 @ivar method: A I{wsdl} method.
 @type I{wsdl} Method.
 """

 def __init__(self, client, method):
 """
 @param client: A client object.
 @type client: L{Client}
 @param method: A I{raw} method.
 @type I{raw} Method.
 """
 self.client = client
 self.method = method

 def __call__(self, *args, **kwargs):
 """
 Invoke the method.
 """
 clientclass = self.clientclass(kwargs)
 client = clientclass(self.client, self.method)
 if not self.faults():
 try:
 return client.invoke(args, kwargs)
 except WebFault, e:
 return (500, e)
 else:
 return client.invoke(args, kwargs)

 def faults(self):
 """ get faults option """
 return self.client.options.faults

 def clientclass(self, kwargs):
 """ get soap client class """
 if SimClient.simulation(kwargs):
 return SimClient
 else:
 return SoapClient

class SoapClient:
 """
 A lightweight soap based web client B{**not intended for external use}
 @ivar service: The target method.
 @type service: L{Service}
 @ivar method: A target method.
 @type method: L{Method}
 @ivar options: A dictonary of options.
 @type options: dict
 @ivar cookiejar: A cookie jar.
 @type cookiejar: libcookie.CookieJar
 """

 def __init__(self, client, method):
 """
 @param client: A suds client.
 @type client: L{Client}
 @param method: A target method.
 @type method: L{Method}
 """
 self.client = client
 self.method = method
 self.options = client.options
 self.cookiejar = CookieJar()

 def invoke(self, args, kwargs):
 """
 Send the required soap message to invoke the specified method
 @param args: A list of args for the method invoked.
 @type args: list
 @param kwargs: Named (keyword) args for the method invoked.
 @type kwargs: dict
 @return: The result of the method invocation.
 @rtype: I{builtin}|I{subclass of} L{Object}
 """
 timer = metrics.Timer()
 timer.start()
 result = None
 binding = self.method.binding.input
 soapenv = binding.get_message(self.method, args, kwargs)
 timer.stop()
 metrics.log.debug(
 "message for '%s' created: %s",
 self.method.name,
 timer)
 timer.start()
 result = self.send(soapenv)
 timer.stop()
 metrics.log.debug(
 "method '%s' invoked: %s",
 self.method.name,
 timer)
 return result

 def send(self, soapenv):
 """
 Send soap message.
 @param soapenv: A soap envelope to send.
 @type soapenv: L{Document}
 @return: The reply to the sent message.
 @rtype: I{builtin} or I{subclass of} L{Object}
 """
 result = None
 location = self.location()
 binding = self.method.binding.input
 transport = self.options.transport
 retxml = self.options.retxml
 prettyxml = self.options.prettyxml
 log.debug('sending to (%s)\nmessage:\n%s', location, soapenv)
 try:
 self.last_sent(soapenv)
 plugins = PluginContainer(self.options.plugins)
 plugins.message.marshalled(envelope=soapenv.root())
 if prettyxml:
 soapenv = soapenv.str()
 else:
 soapenv = soapenv.plain()
 soapenv = soapenv.encode('utf-8')
 plugins.message.sending(envelope=soapenv)
 request = Request(location, soapenv)
 request.headers = self.headers()
 reply = transport.send(request)
 ctx = plugins.message.received(reply=reply.message)
 reply.message = ctx.reply
 if retxml:
 result = reply.message
 else:
 result = self.succeeded(binding, reply.message)
 except TransportError, e:
 if e.httpcode in (202,204):
 result = None
 else:
 log.error(self.last_sent())
 result = self.failed(binding, e)
 return result

 def headers(self):
 """
 Get http headers or the http/https request.
 @return: A dictionary of header/values.
 @rtype: dict
 """
 action = self.method.soap.action
 stock = { 'Content-Type' : 'text/xml; charset=utf-8', 'SOAPAction': action }
 result = dict(stock, **self.options.headers)
 log.debug('headers = %s', result)
 return result

 def succeeded(self, binding, reply):
 """
 Request succeeded, process the reply
 @param binding: The binding to be used to process the reply.
 @type binding: L{bindings.binding.Binding}
 @param reply: The raw reply text.
 @type reply: str
 @return: The method result.
 @rtype: I{builtin}, L{Object}
 @raise WebFault: On server.
 """
 log.debug('http succeeded:\n%s', reply)
 plugins = PluginContainer(self.options.plugins)
 if len(reply) > 0:
 reply, result = binding.get_reply(self.method, reply)
 self.last_received(reply)
 else:
 result = None
 ctx = plugins.message.unmarshalled(reply=result)
 result = ctx.reply
 if self.options.faults:
 return result
 else:
 return (200, result)

 def failed(self, binding, error):
 """
 Request failed, process reply based on reason
 @param binding: The binding to be used to process the reply.
 @type binding: L{suds.bindings.binding.Binding}
 @param error: The http error message
 @type error: L{transport.TransportError}
 """
 status, reason = (error.httpcode, tostr(error))
 reply = error.fp.read()
 log.debug('http failed:\n%s', reply)
 if status == 500:
 if len(reply) > 0:
 r, p = binding.get_fault(reply)
 self.last_received(r)
 return (status, p)
 else:
 return (status, None)
 if self.options.faults:
 raise Exception((status, reason))
 else:
 return (status, None)

 def location(self):
 p = Unskin(self.options)
 return p.get('location', self.method.location)

 def last_sent(self, d=None):
 key = 'tx'
 messages = self.client.messages
 if d is None:
 return messages.get(key)
 else:
 messages[key] = d

 def last_received(self, d=None):
 key = 'rx'
 messages = self.client.messages
 if d is None:
 return messages.get(key)
 else:
 messages[key] = d

class SimClient(SoapClient):
 """
 Loopback client used for message/reply simulation.
 """

 injkey = '__inject'

 @classmethod
 def simulation(cls, kwargs):
 """ get whether loopback has been specified in the I{kwargs}. """
 return kwargs.has_key(SimClient.injkey)

 def invoke(self, args, kwargs):
 """
 Send the required soap message to invoke the specified method
 @param args: A list of args for the method invoked.
 @type args: list
 @param kwargs: Named (keyword) args for the method invoked.
 @type kwargs: dict
 @return: The result of the method invocation.
 @rtype: I{builtin} or I{subclass of} L{Object}
 """
 simulation = kwargs[self.injkey]
 msg = simulation.get('msg')
 reply = simulation.get('reply')
 fault = simulation.get('fault')
 if msg is None:
 if reply is not None:
 return self.__reply(reply, args, kwargs)
 if fault is not None:
 return self.__fault(fault)
 raise Exception('(reply|fault) expected when msg=None')
 sax = Parser()
 msg = sax.parse(string=msg)
 return self.send(msg)

 def __reply(self, reply, args, kwargs):
 """ simulate the reply """
 binding = self.method.binding.input
 msg = binding.get_message(self.method, args, kwargs)
 log.debug('inject (simulated) send message:\n%s', msg)
 binding = self.method.binding.output
 return self.succeeded(binding, reply)

 def __fault(self, reply):
 """ simulate the (fault) reply """
 binding = self.method.binding.output
 if self.options.faults:
 r, p = binding.get_fault(reply)
 self.last_received(r)
 return (500, p)
 else:
 return (500, None)

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 All modules for which code is available

		f5.bigip

		f5.bigip.cm

		f5.bigip.cm.device

		f5.bigip.cm.device_group

		f5.bigip.cm.traffic_group

		f5.bigip.ltm

		f5.bigip.ltm.monitor

		f5.bigip.ltm.nat

		f5.bigip.ltm.node

		f5.bigip.ltm.policy

		f5.bigip.ltm.pool

		f5.bigip.ltm.rule

		f5.bigip.ltm.snat

		f5.bigip.ltm.virtual

		f5.bigip.mixins

		f5.bigip.net.arp

		f5.bigip.net.fdb

		f5.bigip.net.interface

		f5.bigip.net.route

		f5.bigip.net.route_domain

		f5.bigip.net.selfip

		f5.bigip.net.tunnels

		f5.bigip.net.vlan

		f5.bigip.pycontrol

		f5.bigip.pycontrol.pycontrol

		f5.bigip.resource

		f5.bigip.sys.application

		f5.bigip.sys.db

		f5.bigip.sys.failover

		f5.bigip.sys.folder

		f5.bigip.sys.global_settings

		f5.bigip.sys.ntp

		f5.bigip.sys.performance

		f5.common.iapp_parser

		f5.common.logger

		f5.sdk_exception

		suds.client

		suds.transport.http

		suds.transport.https

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/net/vlan.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.vlan

Copyright 2014-2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Network vlan module.

REST URI
 ``http://localhost/mgmt/tm/net/vlan``

GUI Path
 ``Network --> Vlans``

REST Kind
 ``tm:net:vlan:*``
"""

from f5.bigip.mixins import ExclusiveAttributesMixin
from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Vlans(Collection):
 """BigIP network Vlan collection."""
 def __init__(self, net):
 super(Vlans, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [Vlan]
 self._meta_data['attribute_registry'] =\
 {'tm:net:vlan:vlanstate': Vlan}

[docs]class Vlan(Resource):
 """BigIP network Vlan resource."""
 def __init__(self, vlan_s):
 super(Vlan, self).__init__(vlan_s)
 self._meta_data['required_json_kind'] = 'tm:net:vlan:vlanstate'
 self._meta_data['attribute_registry'] =\
 {'tm:net:vlan:interfacescollectionstate': Interfaces_s}

[docs]class Interfaces_s(Collection):
 '''BigIP network Vlan interface collection.

 .. note::
 Not to be confused with ``tm/mgmt/net/interface``. This is object
 is actually called ``interfaces`` with an ``s`` by the BIGIP's REST
 API.
 '''
 def __init__(self, vlan):
 super(Interfaces_s, self).__init__(vlan)
 self._meta_data['allowed_lazy_attributes'] = [Interfaces]
 self._meta_data['attribute_registry'] =\
 {'tm:net:vlan:interfaces:interfacesstate': Interfaces}

[docs]class Interfaces(Resource, ExclusiveAttributesMixin):
 """BigIP network Vlan interface resource."""
 def __init__(self, interfaces_s):
 super(Interfaces, self).__init__(interfaces_s)
 # Vlan intefaces objects do not have a partition
 self._meta_data['required_json_kind'] =\
 'tm:net:vlan:interfaces:interfacesstate'
 # You cannot send both tagged and untagged attributes on update
 self._meta_data['exclusive_attributes'].append(('tagged', 'untagged'))

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/net/fdb.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.fdb

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""Directory: net module: fdb.

REST URI
 ``https://localhost/mgmt/tm/net/fdb?ver=11.6.0``

GUI Path
 ``XXX``

REST Kind
 ``tm:net:fdb:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Fdbs(Collection):
 '''A Collection concrete subclass docstring.'''
 def __init__(self, net):
 '''Auto generated constructor.'''
 super(Fdbs, self).__init__(net)
 # self._meta_data['allowed_lazy_attributes'] = [Fdb]
 # self._meta_data['attribute_registry'] =\
 # {u'tm:net:fdb:fdbstate': u'Fdb'}
 self._meta_data['template_generated'] = True

[docs]class Tunnel(Resource):
 '''A Resource concrete subclass.'''
 def __init__(self, Tunnels):
 '''Autogenerated constructor.'''
 super(Tunnel, self).__init__(Tunnels)
 self._meta_data['template_generated'] = True
 self._meta_data['required_json_kind'] =\
 u"tm:net:fdb:tunnel:tunnelstate"
 self._meta_data['attribute_registry'] =\
 {}

[docs]class Tunnels(Collection):
 '''A Collection concrete subclass docstring.'''
 def __init__(self, fdb):
 '''Auto generated constructor.'''
 super(Tunnels, self).__init__(fdb)
 self._meta_data['allowed_lazy_attributes'] = [Tunnel]
 self._meta_data['attribute_registry'] =\
 {u'tm:net:fdb:tunnel:tunnelstate': u'Tunnel'}
 self._meta_data['template_generated'] = True

[docs]class Vlans(Collection):
 '''A Collection concrete subclass docstring.'''
 def __init__(self, fdb):
 '''Auto generated constructor.'''
 super(Vlans, self).__init__(fdb)
 # self._meta_data['allowed_lazy_attributes'] = [Vlan]
 # self._meta_data['attribute_registry'] =\
 # {u'tm:net:fdb:vlan:vlanstate': u'Vlan'}
 self._meta_data['template_generated'] = True

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

_modules/f5/bigip/net/tunnels.html

 Navigation

 		
 index

 		
 modules |

 		F5 Python SDK 0.1.1a3 documentation »

 		Module code »

 		f5.bigip »

 Source code for f5.bigip.net.tunnels

Copyright 2016 F5 Networks Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""BigIP Network tunnels module.

REST URI
 ``http://localhost/mgmt/tm/net/tunnels``

GUI Path
 ``Network --> tunnels``

REST Kind
 ``tm:net:tunnels:*``
"""

from f5.bigip.resource import Collection
from f5.bigip.resource import Resource

[docs]class Tunnels_s(Collection):
 """BigIP network tunnels collection"""
 def __init__(self, net):
 super(Tunnels_s, self).__init__(net)
 self._meta_data['allowed_lazy_attributes'] = [
 Gres,
 Tunnels,
 Vxlans,
]

[docs]class Tunnels(Collection):
 """BigIP network tunnels resource (collection for GRE, Tunnel, VXLANs"""
 def __init__(self, tunnels_s):
 super(Tunnels, self).__init__(tunnels_s)
 self._meta_data['allowed_lazy_attributes'] = [Gres, Tunnel, Vxlans]
 self._meta_data['attribute_registry'] =\
 {'tm:net:tunnels:tunnel:tunnelstate': Tunnel}

[docs]class Tunnel(Resource):
 """BigIP tunnels tunnel resource"""
 def __init__(self, tunnels):
 super(Tunnel, self).__init__(tunnels)
 self._meta_data['required_creation_parameters'].update(('partition',))
 self._meta_data['required_json_kind'] =\
 'tm:net:tunnels:tunnel:tunnelstate'

[docs]class Gres(Collection):
 """BigIP tunnels GRE sub-collection"""
 def __init__(self, tunnels_s):
 super(Gres, self).__init__(tunnels_s)
 self._meta_data['allowed_lazy_attributes'] = [Gre]
 self._meta_data['attribute_registry'] =\
 {'tm:net:tunnels:gre:grestate': Gre}

[docs]class Gre(Resource):
 """BigIP tunnels GRE sub-collection resource"""
 def __init__(self, gres):
 super(Gre, self).__init__(gres)
 self._meta_data['required_creation_parameters'].update(('partition',))
 self._meta_data['required_json_kind'] =\
 'tm:net:tunnels:gre:grestate'

[docs]class Vxlans(Collection):
 """BigIP tunnels VXLAN sub-collection"""
 def __init__(self, tunnels_s):
 super(Vxlans, self).__init__(tunnels_s)
 self._meta_data['allowed_lazy_attributes'] = [Vxlan]
 self._meta_data['attribute_registry'] =\
 {'tm:net:tunnels:vxlan:vxlanstate': Vxlan}

[docs]class Vxlan(Resource):
 """BigIP tunnels VXLAN sub-collection resource"""
 def __init__(self, vxlans):
 super(Vxlan, self).__init__(vxlans)
 self._meta_data['required_creation_parameters'].update(('partition',))
 self._meta_data['required_json_kind'] =\
 'tm:net:tunnels:vxlan:vxlanstate'

 © Copyright 2016, F5 Networks.
 Created using Sphinx 1.3.5.

