
F5 Python SDK Documentation
Release 0.1.1

F5 Networks

April 01, 2016

Contents

1 Introduction 1

2 Quick Start 3
2.1 Installation . 3
2.2 Basic Example . 3

3 Detailed Documentation 5
3.1 User Guide . 5

3.1.1 Basic Concepts . 5
REST URIs . 5
REST Endpoints . 6
Dynamic Attributes . 6
iControl REST kind Parameters . 6
Methods . 7

3.1.2 REST API Endpoints . 7
Overview . 7
Endpoints . 8

3.1.3 Python Object Paths . 14
Organizing Collection . 15
Collection . 16
Resource . 16
Subcollection . 17
Subcollection Resource . 18

3.1.4 Coding Example . 18
3.1.5 Further Reading . 20

3.2 Developer Guide . 20
3.3 f5 . 20

3.3.1 f5 package . 20
f5.bigip . 20
f5.common . 204
f5.sdk_exception . 205

4 Contact 207

5 Copyright 209

6 Support 211

7 License 213

i

7.1 Apache V2.0 . 213
7.2 Contributor License Agreement . 213

Python Module Index 215

ii

CHAPTER 1

Introduction

This project implements an object model based SDK for the F5 Networks BigIP iControl REST interface. Users of
this library can create, edit, update, and delete configuration objects on a BigIP device. For more information on the
basic principals that the SDK uses see the User Guide.

1

F5 Python SDK Documentation, Release 0.1.1

2 Chapter 1. Introduction

CHAPTER 2

Quick Start

2.1 Installation

$> pip install f5-sdk

Note: If you are using a pre-release version you must use the --pre option with the pip command.

2.2 Basic Example

from f5.bigip import BigIP

Connect to the BigIP
bigip = BigIP("bigip.example.com", "admin", "somepassword")

Get a list of all pools on the BigIP and print their name and their
members' name
pools = bigip.ltm.pools.get_collection()
for pool in pools:

print pool.name
for member in pool.members_s.get_collection():

print member.name

Create a new pool on the BigIP
mypool = bigip.ltm.pools.pool.create(name='mypool', partition='Common')

Load an existing pool and update its description
pool_a = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_a.description = "New description"
pool_a.update()

Delete a pool if it exists
if bigip.ltm.pools.pool.exists(name='mypool', partition='Common'):

pool_b = bigip.ltm.pools.pool.load(name='mypool', partition='Common')
pool_b.delete()

3

F5 Python SDK Documentation, Release 0.1.1

4 Chapter 2. Quick Start

CHAPTER 3

Detailed Documentation

3.1 User Guide

To get the most out of using our SDK, it’s useful to understand the basic concepts and principals we used when we
designed it. It is also important that you are familiar with the F5 BIG-IP and, at a minimum, how to configure BIG-IP
using the configuration utility (the GUI). More useful still would be if you are already familiar with the iControl REST
API.

3.1.1 Basic Concepts

Familiarizing yourself with the following underlying basic concepts will help you get up and running with the SDK.

Important: When using the SDK, you’ll notice that collection objects are referenced using the plural version of the
Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to
the name when referring to the object.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

• LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path
f5.bigip.pools.get_collection().

• Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via
f5.bigip.net.tunnels_s.get_collection().

REST URIs

You can directly infer REST URIs from the python expressions, and vice versa.

5

https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx
https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx

F5 Python SDK Documentation, Release 0.1.1

Examples

Expression: bigip = BigIP('a', 'b', 'c')
URI Returned: https://a/mgmt/tm/

Expression: bigip.ltm
URI Returned: https://a/mgmt/tm/ltm/

Expression: pools1 = bigip.ltm.pools
URI Returned: https://a/mgmt/tm/ltm/pool

Expression: pool_a = pools1.create(partition="Common", name="foo")
URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

REST Endpoints

A set of basic REST endpoints can be derived from the object’s URI and kind (listed below).

• Organizing Collection

• Collection

• Resource

• Subcollection

• Subcollection Resource

Dynamic Attributes

The python object’s attribute can be created dynamically based on the JSON returned when querying the REST API.

iControl REST kind Parameters

Almost all iControl REST API entries contain a parameter named kind. This parameter provides information about
the object that lets you know what you should expect to follow it. The iControl REST API uses three types of kind:
collectionstate, state, and stats.

kind Associated Objects Methods
collectionstateOrganizingCollection,

Collection
exists()

state Resource create(), update(), refresh(), delete(),
load(), exists()

stats Resource refresh(), load(), exists()

6 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Methods

Method HTTP Command Action(s)
create() POST

creates a new resource on the device
with its own URI

update() PUT

submits a new configuration to the
device resource; sets the
Resource attributes to the state
reported by the device

refresh() GET

obtains the state of a device
resource; sets the representing
Python Resource Object; tracks
device state via its attributes

delete() DELETE

removes the resource from the
device, sets self.__dict__
to {’deleted’: True}

load() GET

obtains the state of an existing
resource on the device; sets
the Resource attributes to match that
state

exists() GET

checks for the existence of a named
object on the BigIP

Note: Available methods are restricted according to the object’s kind.

3.1.2 REST API Endpoints

Overview

REST URI Segments

We’ll start exploring the iControl REST API’s endpoints with an example detailing how the endpoint types map to the
different parts of the URI. The different types of resources used by the SDK shown in the example are explained in
detail later in this guide.

Example: The URI below returns the JSON for an LTM pool member.

3.1. User Guide 7

F5 Python SDK Documentation, Release 0.1.1

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
|-------|---|----|--------------|-------|-------------|

OC OC Coll Resource SC SubColl Resrc

OC Organizing Collection
Coll Collection
Resource Resource
SC Subcollection
SubColl Resrc Subcollection Resource

Endpoints

Organizing Collection

kind: collectionstate

The iControl REST User Guide defines an organizing collection as a URI that designates all of the tmsh subordinate
modules and components in the specified module. Organizing collections, which appear directly under f5.bigip,
correspond to the various modules available on the BIG-IP (for example, f5.bigip.ltm).

The organizing collection names correspond to the items that appear in the drawers on the left-hand side of the BIG-IP
configuration utility (the GUI). The module names are abbreviated in the REST API, but the mapping is otherwise
pretty straightforward. For example, the SDK module f5.bigip.sys maps to the System drawer in the GUI.

OrganizingCollection objects do not have configuration parameters. As shown in the example below, the
JSON blob received in response to an HTTP GET for an organizing collection object contains an items parameter
with a list of references to Collection and Resource objects.

Example

{
"kind":"tm:ltm:ltmcollectionstate",
"selfLink":"https://localhost/mgmt/tm/ltm?ver=11.5.0",
"items":[

{
"reference":{
"link":"https://../mgmt/tm/ltm/auth?ver=11.5.0"
}
},
{
"reference":{
"link":"https://../mgmt/tm/ltm/classification?ver=11.5.0"
}
},

]
}

Collection

kind: collectionstate

A collection is similar to an Organizing Collection in that no configurations can be applied to it. A collection differs
from an organizing collection in that a collection only contains references to objects of the same type in its items
parameter.

8 Chapter 3. Detailed Documentation

https://devcentral.f5.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160

F5 Python SDK Documentation, Release 0.1.1

Important: When using the SDK, you’ll notice that collection objects are referenced using the plural version of the
Resource objects they contain. When the Resource object’s type is plural (ends in an s), you need to add _s to
the name when referring to the object.

This _s rule applies to all object collections where the object in the collection already ends in s.

Examples:

• LTM Pool objects are collected in f5.bigip.ltm.pool.Pools and are accessible via the path
f5.bigip.pools.get_collection().

• Network Tunnels objects are stored in f5.bip.net.tunnels.Tunnels_s and are accessible via
f5.bigip.net.tunnels_s.get_collection().

You can use get_collection() to get a list of the objects in the collection.

The example below shows the JSON you would get back from a REST collection endpoint. Note that it contains an
items attribute that contains Resource objects (we know the objects are resources because their kind ends in
state).

3.1. User Guide 9

F5 Python SDK Documentation, Release 0.1.1

Example

{
kind: "tm:ltm:pool:poolcollectionstate",
selfLink: "https://localhost/mgmt/tm/ltm/pool?ver=11.6.0",
items: [

{
kind: "tm:ltm:pool:poolstate",
name: "my_newpool",
partition: "Common",
fullPath: "/Common/my_newpool",
generation: 76,
selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool?ver=11.6.0",
allowNat: "yes",
allowSnat: "yes",
description: "This is my pool",
ignorePersistedWeight: "disabled",
ipTosToClient: "pass-through",
ipTosToServer: "pass-through",
linkQosToClient: "pass-through",
linkQosToServer: "pass-through",
loadBalancingMode: "round-robin",
minActiveMembers: 0,
minUpMembers: 0,
minUpMembersAction: "failover",
minUpMembersChecking: "disabled",
queueDepthLimit: 0,
queueOnConnectionLimit: "disabled",
queueTimeLimit: 0,
reselectTries: 0,
serviceDownAction: "none",
slowRampTime: 10,
membersReference: {
link: "https://localhost/mgmt/tm/ltm/pool/~Common~my_newpool/members?ver=11.6.0",
isSubcollection: true
}

},
{

kind: "tm:ltm:pool:poolstate",
name: "mypool",
partition: "Common",
fullPath: "/Common/mypool",
generation: 121,
selfLink: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0",
allowNat: "yes",
allowSnat: "yes",
ignorePersistedWeight: "disabled",
ipTosToClient: "pass-through",
ipTosToServer: "pass-through",
linkQosToClient: "pass-through",
linkQosToServer: "pass-through",
loadBalancingMode: "round-robin",
minActiveMembers: 0,
minUpMembers: 0,
minUpMembersAction: "failover",
minUpMembersChecking: "disabled",
queueDepthLimit: 0,
queueOnConnectionLimit: "disabled",
queueTimeLimit: 0,
reselectTries: 0,
serviceDownAction: "none",
slowRampTime: 10,
membersReference: {
link: "https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0",
isSubcollection: true
}

},
]

}

10 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Resource

kind: state

A resource is a fully configurable object for which the CURDLE methods are supported.

• create()

• refresh()

• update()

• delete()

• load()

• exists()

When using the SDK, you will notice that resources are instantiated via their collection. Once created or loaded,
resources contain attributes that map to the JSON fields returned by the BIG-IP.

Example

To load a f5.bigip.ltm.node.Node object, you would use the following code.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> n = bigip.ltm.nodes.node.load(partition='Common', name='192.168.15.15')
>>> print n.raw
{

"kind":"tm:ltm:node:nodestate",
"name":"192.168.15.15",
"partition":"Common",
"fullPath":"/Common/192.168.15.15",
"generation":16684,
"selfLink":"https://localhost/mgmt/tm/ltm/node/~Common~192.168.15.15?ver=11.6.0",
"address":"192.168.15.15",
"connectionLimit":0,
"dynamicRatio":1,
"ephemeral":"false",
"fqdn":{

"addressFamily":"ipv4",
"autopopulate":"disabled",
"downInterval":5,
"interval":3600

},
"logging":"disabled",
"monitor":"default",
"rateLimit":"disabled",
"ratio":1,
"session":"user-enabled",
"state":"unchecked"

}

The output of the f5.bigip.ltm.node.Node.raw shows all of the available attributes.
Once you have loaded the object, you can access the attributes as shown below.

>>> n.fqdn['downInterval'] = 10
>>> n.logging = 'enabled'
>>> n.update()

3.1. User Guide 11

F5 Python SDK Documentation, Release 0.1.1

Subcollection

kind: collectionstate

A subcollection is a Collection that’s attached to a higher-level Resource object. Subcollections are al-
most exactly the same as collections; the exception is that they can only be accessed via the resource they’re at-
tached to (the ‘parent’ resource). A subcollection can be identified by the value isSubcollection: true,
followed by an items attribute listing the subcollection’s resources. Just as with collections, you can use
:meth:‘~f5.bigip.resource.Collection

.get_collection‘ to get a list of the resources in the subcollection.

Example

A pool resource has a members_s subcollection attached to it; you must create or load the ‘parent’ resource
(pool) before you can access the subcollection (members_s).

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> members = pool.members_s.get_collection()

Note: In the above example, the subcollection object – members_s – ends in _s because the subcollection resource
object name (members) is already plural.

The JSON returned for a pool with one member is shown below. Note the highlighted rows, which indicate the
subcollection.

12 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Example

{
"kind": "tm:ltm:pool:poolstate",
"name": "p1",
"partition": "Common",
"fullPath": "/Common/p1",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1?expandSubcollections=true&ver=11.6.0",
"allowNat": "yes",
"allowSnat": "yes",
"ignorePersistedWeight": "disabled",
"ipTosToClient": "pass-through",
"ipTosToServer": "pass-through",
"linkQosToClient": "pass-through",
"linkQosToServer": "pass-through",
"loadBalancingMode": "round-robin",
"minActiveMembers": 0,
"minUpMembers": 0,
"minUpMembersAction": "failover",
"minUpMembersChecking": "disabled",
"queueDepthLimit": 0,
"queueOnConnectionLimit": "disabled",
"queueTimeLimit": 0,
"reselectTries": 0,
"serviceDownAction": "none",
"slowRampTime": 10,
"membersReference": {

"link": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members?ver=11.6.0",
"isSubcollection": true,
"items": [

{
"kind": "tm:ltm:pool:members:membersstate",
"name": "n1:80",
"partition": "Common",
"fullPath": "/Common/n1:80",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
"address": "192.168.51.51",
"connectionLimit": 0,
"dynamicRatio": 1,
"ephemeral": "false",
"fqdn": {
"autopopulate": "disabled",

}
"inheritProfile": "enabled",
"logging": "disabled",
"monitor": "default",
"priorityGroup": 0,
"rateLimit": "disabled",
"ratio": 1,
"session": "user-enabled",
"state": "unchecked",

}
]

},
}

3.1. User Guide 13

F5 Python SDK Documentation, Release 0.1.1

Subcollection Resource

kind: state

A subcollection resource is essentially the same as a resource. As with collections and subcollections, the only
difference between the two is that you must access the subcollection resource via the subcollection attached to the
main resource.

Example

To build on the subcollection example: pool is the resource, members_s is the subcollection, and members
(the actual pool member) is the subcollection resource.

>>> from f5.bigip import BigIP
>>> bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
>>> pool = bigip.ltm.pools.pool.load(partition='Common', name='p1')
>>> member = pool.members_s.member.load(partition='Common', name='n1:80')

The JSON below shows a f5.bigip.ltm.pool.members_s.members object.

{
"kind": "tm:ltm:pool:members:membersstate",
"name": "n1:80",
"partition": "Common",
"fullPath": "/Common/n1:80",
"generation": 18703,
"selfLink": "https://localhost/mgmt/tm/ltm/pool/~Common~p1/members/~Common~n1:80?ver=11.6.0",
"address": "192.168.51.51",
"connectionLimit": 0,
"dynamicRatio": 1,
"ephemeral": "false",
"fqdn": {

"autopopulate": "disabled",
}
"inheritProfile": "enabled",
"logging": "disabled",
"monitor": "default",
"priorityGroup": 0,
"rateLimit": "disabled",
"ratio": 1,
"session": "user-enabled",
"state": "unchecked",

}

Tip: It’s easy to tell that this is a Resource object because the kind is state, not collectionstate.

3.1.3 Python Object Paths

The object classes used in the SDK directly correspond to the REST endpoints you’d use to access the objects via the
API. Remembering the patterns below will help you easily derive an SDK object class from an object URI.

1. Objects take the form f5.<product>.<organizing_collection>.<collection>.<resource>.<subcollection>.<resource>.

2. The collection and the resource generally have the same name, so the collection is the plural version of the
resource. This means that you add s to the end of the resource to get the collection, unless the resource already

14 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

ends in s. If the resource is already plural, add _s to get the collection.

3. The object itself is accessed by its CamelCase name, but the usage of the object is all lowercase.

4. The characters . and - are always replaced with _ in the SDK.

Because the REST API endpoints have a hierarchical structure, you need to load/create the highest-level objects
before you can load lower-level ones. The example below shows how the pieces of the URI correspond to the REST
endpoints/SDK classes. The first part of the URI is the IP address of your BIG-IP device.

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~m1:80
|-------|---|----|--------------|-------|-------------|

OC OC Coll Resource SC SubColl Resrc

OC Organizing Collection
Coll Collection
Resource Resource
SC Subcollection
SubColl Resrc Subcollection Resource

In the sections below, we’ll walk through the Python object paths using LTM pools and pool members as examples.
You can also skip straight to the Coding Example.

Organizing Collection

The mgmt/tm and ltm organizing collections define what area of the BIG-IP you’re going to work with. The
mgmt/tm organizing collection corresponds to the management plane of your BIG-IP device (TMOS). Loading ltm
indicates that we’re going to work with the BIG-IP’s Local Traffic module.

Endpoint http://192.168.1.1/mgmt/tm/
Kind tm:restgroupresolverviewstate
Type organizing collection
Class f5.bigip.BigIP
Instantiation bigip = BigIP(’192.168.1.1’, ’myuser’, ’mypass’)

Endpoint http://192.168.1.1/mgmt/tm/ltm
Kind tm:ltm:collectionstate
Type organizing collection
Class f5.bigip.ltm
Instantiation ltm = bigip.ltm

Example: Connect to the BIG-IP and load the LTM module

from f5.bigip import BigIP
bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
ltm = bigip.ltm

>>> print bigip
<f5.bigip.BigIP object at 0x8a29d0>

>>> print ltm
<f5.bigip.ltm.LTM object at 0x8c0b30>

3.1. User Guide 15

http://192.168.1.1/mgmt/tm/
http://192.168.1.1/mgmt/tm/ltm

F5 Python SDK Documentation, Release 0.1.1

Collection

Now that the higher-level organizing collections are loaded (in other words, we’re signed in to the BIG-IP and accessed
the LTM module), we can load the pool collection.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool
Kind tm:ltm:pool:poolcollectionstate
Type collection
Class f5.bigip.ltm.pool.Pools
Instantiation pools = bigip.ltm.pools

Example: Load the pool collection

from f5.bigip import BigIP

bigip = BigIP('192.168.1.1', 'myuser', 'mypass')
pool_collection = bigip.ltm.pools
pools = bigip.ltm.pools.get_collection()

for pool in pools:
print pool.name

my_newpool
mypool
pool2
pool_1

In the above example, we instantiated the class f5.bigip.ltm.pool.Pools, then used the
f5.bigip.ltm.pool.Pools.get_collection() method to fetch the collection (in other words, a
list of the pool resources configured on the BIG-IP).

Resource

In the SDK, we refer to a single instance of a configuration object as a resource. As shown in the previous sections,
we are able to access the pool resources on the BIG-IP after loading the mgmt\tm\ltm organizing collections and
the pools collection.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/
Kind tm:ltm:pool:poolstate
Type resource
Class f5.bigip.ltm.pool.Pool
Instantiation pool = pools.pool.load(partition=’Common’, name=’mypool’)

Example: Load a pools collection

from f5.bigip import BigIP
pool = pools.pool.load(partition='Common', name='mypool')

In the example above, we instantiated the class f5.bigip.ltm.pool.Pool and loaded the
f5.bigip.ltm.pools.pool object. The object is a python representation of the BIG-IP pool we loaded
(in this case, Common/mypool).

Tip: You can always see the representation of an object using the raw() method.

16 Chapter 3. Detailed Documentation

http://192.168.1.1/mgmt/tm/ltm/pool
http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/

F5 Python SDK Documentation, Release 0.1.1

>>> pool.raw
{
u'generation': 123,
u'minActiveMembers': 0,
u'ipTosToServer': u'pass-through',
u'loadBalancingMode': u'round-robin',
u'allowNat': u'yes',
u'queueDepthLimit': 0,
u'membersReference': {

u'isSubcollection': True,
u'link': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool/members?ver=11.6.0'},
u'minUpMembers': 0, u'slowRampTime': 10,
u'minUpMembersAction': u'failover',
'_meta_data': {

'attribute_registry': {
'tm:ltm:pool:memberscollectionstate': <class 'f5.bigip.ltm

.pool.Members_s'>
},
'container': <f5.bigip.ltm.pool.Pools object at 0x835ef0>,
'uri': u'https://10.190.6.253/mgmt/tm/ltm/pool/~Common~mypool/',
'exclusive_attributes': [],
'read_only_attributes': [],
'allowed_lazy_attributes': [<class 'f5.bigip.ltm.pool.Members_s'>],
'required_refresh_parameters': set(['name']),
'required_json_kind': 'tm:ltm:pool:poolstate',
'bigip': <f5.bigip.BigIP object at 0x5826f0>,
'required_creation_parameters': set(['name']),
'creation_uri_frag': '',
'creation_uri_qargs': {u'ver': [u'11.6.0']}

},
u'minUpMembersChecking': u'disabled',
u'queueTimeLimit': 0,
u'linkQosToServer': u'pass-through',
u'queueOnConnectionLimit': u'disabled',
u'fullPath': u'/Common/mypool',
u'kind': u'tm:ltm:pool:poolstate',
u'name': u'mypool',
u'partition': u'Common',
u'allowSnat': u'yes',
u'ipTosToClient': u'pass-through',
u'reselectTries': 0,
u'selfLink': u'https://localhost/mgmt/tm/ltm/pool/~Common~mypool?ver=11.6.0',
u'serviceDownAction': u'none',
u'ignorePersistedWeight': u'disabled',
u'linkQosToClient': u'pass-through'

}

Subcollection

A subcollection is a collection of resources that can only be accessed via its parent resource.

To continue our example: The f5.bigip.ltm.pool.Pool resource object contains
f5.bigip.ltm.pool.Member subcollection resource objects. These subcollection resources – the real-
servers that are attached to the pool, or ‘pool members’ – are part of the members_s subcollection. (Remember, we
have to add _s to the end of collection object names if the name of the resource object it contains already ends in s).

3.1. User Guide 17

F5 Python SDK Documentation, Release 0.1.1

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members
Kind tm:ltm:pool:members:memberscollectionstate
Type subcollection
Class f5.bigip.ltm.pool.Members_s
Instantiation members = pool.members_s

Example: Load the members_s collection

from f5.bigip import BigIP
members = pool.members_s.get_collection()
print members
[<f5.bigip.ltm.pool.Members object at 0x9d7ff0>, <f5.bigip.ltm.pool.Members object at 0x9d7830>]

Subcollection Resource

As explained in the previous section, a subcollection contains subcollection resources. These subcollection resources
can only be loaded after all of the parent objects (organizing collections, resource, and subcollection) have been loaded.

Endpoint http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1
Kind tm:ltm:pool:members:membersstate
Type subcollection resource
Class f5.bigip.ltm.pool.Members
Instantia-
tion

members = pool.members_s.members.load(partition=’Common’,
name=’member1:<port>’)

Example: Load member objects

from f5.bigip import BigIP
member = members_s.members.load(partition='Common', name='m1')
print member
<f5.bigip.ltm.pool.Members object at 0x9fd530>

Coding Example

3.1.4 Coding Example

18 Chapter 3. Detailed Documentation

http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members
http://192.168.1.1/mgmt/tm/ltm/pool/~Common~mypool/members/~Common~member1

F5 Python SDK Documentation, Release 0.1.1

Managing LTM Pools and Members via the F5 SDK

from f5.bigip import BigIP

Connect to the BigIP and configure the basic objects
bigip = BigIP('10.190.6.253', 'admin', 'default')
ltm = bigip.ltm
pools = bigip.ltm.pools.get_collection()
pool = bigip.ltm.pools.pool

Define a pool object and load an existing pool
pool_obj = bigip.ltm.pools.pool
pool_1 = pool_obj.load(partition='Common', name='mypool')

We can also create the object and load the pool at the same time
pool_2 = bigip.ltm.pools.pool.load(partition='Common', name='mypool')

Print the object
print pool_1.raw

Make sure 1 and 2 have the same names and generation
assert pool_1.name == pool_2.name
assert pool_1.generation == pool_2.generation

Update the description
pool_1.description = "This is my pool"
pool_1.update()

Check the updated description
print pool_1.description

Since we haven't refreshed pool_2 it shouldn't match pool_1 any more
assert pool_1.generation > pool_2.generation

Refresh pool_2 and check that is now equal
pool_2.refresh()
assert pool_1.generation == pool_2.generation

print pool_1.generation
print pool_2.generation

Create members on pool_1

members = pool_1.members_s.get_collection()
member = pool_1.members_s.members

m1 = pool_1.members_s.members.create(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.create(partition='Common', name='m2:80')

load the pool members
m1 = pool_1.members_s.members.load(partition='Common', name='m1:80')
m2 = pool_1.members_s.members.load(partition='Common', name='m2:80')

Get all of the pool members for pool_1 and print their names

for member in members:
print member.name

Delete our pool member m1
m1.delete()

Make sure it is gone
if pool_1.members_s.members.exists(partition='Common', name='m1:80'):
raise Exception("Object should have been deleted")

We are done with this pool so remove it from bigip
pool_1.delete()

Make sure it is gone

if bigip.ltm.pools.pool.exists(partition='Common', name='mypool'):
raise Exception("Object should have been deleted")

3.1. User Guide 19

F5 Python SDK Documentation, Release 0.1.1

3.1.5 Further Reading

• F5 SDK API Docs

• F5 iControl REST DevCentral Site

• F5 iControl REST API Reference

• F5 iControl REST API Guide

3.2 Developer Guide

COMING SOON

3.3 f5

3.3.1 f5 package

f5.bigip

f5.bigip module

Classes and functions for configuring BIG-IP

cm BigIP cluster module
ltm BigIP Local Traffic Monitor (LTM) module.
net BigIP net module
sys BigIP System (sys) module

Organizing Collection Modules

resource.ResourceBase(container) Base class for all BigIP iControl REST API endpoints.
resource.OrganizingCollection(bigip) Base class for objects that collect resources under them.
resource.Collection(container) Base class for objects that collect a list of Resources
resource.Resource(container) Base class to represent a Configurable Resource on the device.

Resource Base Classes

resource.KindTypeMismatch Raise this when server JSON keys are incorrect for the Resource type.
resource.DeviceProvidesIncompatibleKey Raise this when server JSON keys are incompatible with Python.
resource.InvalidResource Raise this when a caller tries to invoke an unsupported CRUDL op.
resource.MissingRequiredCreationParameter Various values MUST be provided to create different Resources.
resource.MissingRequiredReadParameter Various values MUST be provided to refresh some Resources.
resource.UnregisteredKind The returned server JSON kind key wasn’t expected by this Resource.
resource.GenerationMismatch The server reported BigIP is not the expacted value.

Continued on next page

20 Chapter 3. Detailed Documentation

https://devcentral.f5.com/wiki/iControlREST.HomePage.ashx
https://devcentral.f5.com/d/icontrol-rest-api-reference-version-120?download=true
https://devcentral.f5.com/d/the-user-guide-for-the-icontrol-rest-interface-in-big-ip-version-1160?download=true

F5 Python SDK Documentation, Release 0.1.1

Table 3.3 – continued from previous page
resource.InvalidForceType Must be of type bool.
resource.URICreationCollision self._meta_data[’uri’] can only be assigned once. In create or load.
resource.UnsupportedOperation Object does not support the method that was called.

Resource Exceptions

mixins.ToDictMixin Convert an object’s attributes to a dictionary
mixins.LazyAttributesMixin
mixins.ExclusiveAttributesMixin Overrides __setattr__ to remove exclusive attrs from the object.
mixins.UnnamedResourceMixin This makes a resource object work if there is no name.
mixins.LazyAttributesRequired Raised when a object accesses a lazy attribute that is not listed

Mixins
class f5.bigip.BigIP(hostname, username, password, **kwargs)

Bases: f5.bigip.resource.OrganizingCollection

An interface to a single BIG-IP

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

f5.bigip.cm

3.3. f5 21

F5 Python SDK Documentation, Release 0.1.1

Module Contents BigIP cluster module

REST URI http://localhost/mgmt/tm/cm/

GUI Path Device Management

REST Kind tm:cm:*

device BigIP cluster device submodule
device_group BigIP cluster device-group submodule
traffic_group BigIP cluster traffic-group submodule

Submodule List
class f5.bigip.cm.Cm(bigip)

Bases: f5.bigip.resource.OrganizingCollection

BigIP Cluster Organizing Collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

Submodules

device BigIP cluster device submodule

REST URI http://localhost/mgmt/tm/cm/device/

GUI Path Device Management --> Devices

22 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

REST Kind tm:cm:device:*

class f5.bigip.cm.device.Devices(cm)
Bases: f5.bigip.resource.Collection

BigIP cluster devices collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device.Device(device_s)
Bases: f5.bigip.resource.Resource

BigIP cluster device object.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

3.3. f5 23

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

24 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

device_group BigIP cluster device-group submodule

REST URI http://localhost/mgmt/tm/cm/device-group

GUI Path Device Management --> Device Groups

REST Kind tm:cm:device-group:*

class f5.bigip.cm.device_group.Device_Groups(cm)
Bases: f5.bigip.resource.Collection

BigIP cluster device-groups collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 25

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device_group.Device_Group(device_groups)
Bases: f5.bigip.resource.Resource

BigIP cluster device-group resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

26 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.cm.device_group.Devices_s(device_group)
Bases: f5.bigip.resource.Collection

BigIP cluster devices-group devices subcollection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

3.3. f5 27

F5 Python SDK Documentation, Release 0.1.1

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.device_group.Devices(devices_s)
Bases: f5.bigip.resource.Resource

BigIP cluster devices-group devices subcollection resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

28 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

traffic_group BigIP cluster traffic-group submodule

REST URI http://localhost/mgmt/tm/cm/traffic-group

GUI Path Device Management --> Traffic Groups

REST Kind tm:cm:traffic-group:*

class f5.bigip.cm.traffic_group.Traffic_Groups(cm)
Bases: f5.bigip.resource.Collection

BigIP cluster traffic-group collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

3.3. f5 29

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.cm.traffic_group.Traffic_Group(traffic_groups)
Bases: f5.bigip.resource.Resource

BigIP cluster traffic-group resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

30 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

3.3. f5 31

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

f5.bigip.ltm

Module Contents BigIP Local Traffic Monitor (LTM) module.

REST URI http://localhost/mgmt/tm/ltm/

GUI Path Local Traffic

REST Kind

tm:ltm:*

monitor BigIP LTM monitor submodule.
nat BigIP Local Traffic Manager (LTM) Nat module.
node BigIP Local Traffic Manager (LTM) node module.
policy BigIP Local Traffic Manager (LTM) policy module.
pool BigIP Local Traffic Manager (LTM) pool module.
rule BigIP Local Traffic Manager (LTM) rule module.
snat BigIP Local Traffic Manager (LTM) Snat module.
ssl This module provides some more Pythonic support for SSL.
virtual BigIP Local Traffic Manager (LTM) virtual module.

class f5.bigip.ltm.Ltm(bigip)
Bases: f5.bigip.resource.OrganizingCollection

BigIP Local Traffic Manager (LTM) organizing collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

32 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

Submodules

monitor BigIP LTM monitor submodule.

REST URI http://localhost/mgmt/tm/ltm/monitors/

GUI Path Local Traffic --> Monitors

REST Kind tm:ltm:monitors*

Https(monitor) BigIP Http monitor collection.
Http(https) BigIP Http monitor resource.
Https_s(monitor) BigIP Https monitor collection.
HttpS(https_s) BigIP Https monitor resource.
Diameters(monitor) BigIP diameter monitor collection.
Diameter(diameters) BigIP diameter monitor resource.
Dns_s(monitor) BigIP Dns monitor collection.
Dns(dns_s) BigIP Dns monitor resource.
Externals(monitor) BigIP external monitor collection.
External(externals) BigIP external monitor resrouce.
Firepass_s(monitor) BigIP Fire Pass monitor collection.
Firepass(firepass_s) BigIP external monitor resource.
Ftps(monitor) BigIP Ftp monitor collection.
Ftp(ftps) BigIP Ftp monitor resource.
Gateway_Icmps(monitor) BigIP Gateway Icmp monitor collection.
Gateway_Icmp(gateway_icmps) BigIP Gateway Icmp monitor resource.
Icmps(monitor) BigIP Icmp monitor collection.
Icmp(icmps) BigIP Icmp monitor resource.
Imaps(monitor) BigIP Imap monitor collection.
Imap(imaps) BigIP Imap monitor resource.
Inbands(monitor) BigIP in band monitor collection.
Inband(inbands) BigIP in band monitor resource.
Ldaps(monitor) BigIP Ldap monitor collection.
Ldap(ldaps) BigIP Ldap monitor resource.
Module_Scores(monitor) BigIP module scores monitor collection.
Module_Score(gateway_icmps) BigIP module scores monitor resource.
Mssqls(monitor) BigIP Mssql monitor collection.
Mssql(mssqls) BigIP Mssql monitor resource.
Mysqls(monitor) BigIP MySQL monitor collection.
Mysql(mysqls) BigIP MySQL monitor resource.
Nntps(monitor) BigIP Nntps monitor collection.
Nntp(nntps) BigIP Nntps monitor resource.
Nones(monitor) BigIP None monitor collection.
NONE(nones) BigIP None monitor resource.
Oracles(monitor) BigIP Oracle monitor collection.
Oracle(oracles) BigIP Oracle monitor resource.

Continued on next page

3.3. f5 33

F5 Python SDK Documentation, Release 0.1.1

Table 3.7 – continued from previous page
Pop3s(monitor) BigIP Pop3 monitor collection.
Pop3(pop3s) BigIP Pop3 monitor resource.
Postgresqls(monitor) BigIP PostGRES SQL monitor collection.
Postgresql(postgresqls) BigIP PostGRES SQL monitor resource.
Radius_s(monitor) BigIP radius monitor collection.
Radius(radius_s) BigIP radius monitor resource.
Radius_Accountings(monitor) BigIP radius accounting monitor collection.
Radius_Accounting(radius_accountings) BigIP radius accounting monitor resource.
Real_Servers(monitor) BigIP real-server monitor collection.
Real_Server(real_servers) BigIP real-server monitor resource.
Rpcs(monitor) BigIP Rpc monitor collection.
Rpc(rpcs) BigIP Rpc monitor resource.
Sasps(monitor) BigIP Sasp monitor collection.
Sasp(sasps) BigIP Sasp monitor resource.
Scripteds(monitor) BigIP scripted monitor collection.
Scripted(scripteds) BigIP scripted monitor resource.
Sips(monitor) BigIP Sip monitor collection.
Sip(sips) BigIP Sip monitor resource.
Smbs(monitor) BigIP Smb monitor collection.
Smb(smbs) BigIP Smb monitor resource.
Smtps(monitor) BigIP Smtp monitor collection.
Smtp(smtps) BigIP Smtp monitor resource.
Snmp_Dcas(monitor) BigIP SNMP DCA monitor collection.
Snmp_Dca(snmp_dcas) BigIP SNMP DCA monitor resource.
Snmp_Dca_Bases(monitor) BigIP SNMP DCA bases monitor collection.
Snmp_Dca_Base(snmp_dca_bases) BigIP SNMP DCA monitor resource.
Soaps(monitor) BigIP Soap monitor collection.
Soap(soaps) BigIP Soap monitor resource.
Tcps(monitor) BigIP Tcp monitor collection.
Tcp(tcps) BigIP Tcp monitor resource.
Tcp_Echos(monitor) BigIP Tcp echo monitor collection.
Tcp_Echo(tcp_echos) BigIP Tcp echo monitor resource.
Tcp_Half_Opens(monitor) BigIP Tcp half open monitor collection.
Tcp_Half_Open(tcp_half_opens) BigIP Tcp half open monitor resource.
Udps(monitor) BigIP Udp monitor collection.
Udp(udps) BigIP Udp monitor resource.
Virtual_Locations(monitor) BigIP virtual-locations monitor collection.
Virtual_Location(virtual_locations) BigIP virtual-locations monitor resource.
Waps(monitor) BigIP Wap monitor collection.
Wap(waps) BigIP Wap monitor resource.
Wmis(monitor) BigIP Wmi monitor collection.
Wmi(wmis) BigIP Wmi monitor resource.

Monitor Collections and Resources
class f5.bigip.ltm.monitor.Https(monitor)

Bases: f5.bigip.resource.Collection

BigIP Http monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

34 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.monitor.Http(https)

Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Http monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

3.3. f5 35

F5 Python SDK Documentation, Release 0.1.1

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

36 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Https_s(monitor)
Bases: f5.bigip.resource.Collection

BigIP Https monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.HttpS(https_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Https monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

3.3. f5 37

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

38 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Diameters(monitor)
Bases: f5.bigip.resource.Collection

BigIP diameter monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

3.3. f5 39

F5 Python SDK Documentation, Release 0.1.1

class f5.bigip.ltm.monitor.Diameter(diameters)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP diameter monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

40 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Dns_s(monitor)
Bases: f5.bigip.resource.Collection

BigIP Dns monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

3.3. f5 41

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Dns(dns_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Dns monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

42 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Externals(monitor)
Bases: f5.bigip.resource.Collection

BigIP external monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

3.3. f5 43

F5 Python SDK Documentation, Release 0.1.1

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.External(externals)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP external monitor resrouce.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

44 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Firepass_s(monitor)
Bases: f5.bigip.resource.Collection

BigIP Fire Pass monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 45

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Firepass(firepass_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP external monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

46 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Ftps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Ftp monitor collection.

3.3. f5 47

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Ftp(ftps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Ftp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

48 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 49

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Gateway_Icmps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Gateway Icmp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Gateway_Icmp(gateway_icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Gateway Icmp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

50 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 51

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Icmps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Icmp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

52 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Icmp(icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Icmp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 53

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Imaps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Imap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

54 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Imap(imaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Imap monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 55

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Inbands(monitor)
Bases: f5.bigip.resource.Collection

BigIP in band monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

56 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Inband(inbands)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP in band monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 57

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Ldaps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Ldap monitor collection.

58 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Ldap(ldaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Ldap monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

3.3. f5 59

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

60 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Module_Scores(monitor)
Bases: f5.bigip.resource.Collection

BigIP module scores monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Module_Score(gateway_icmps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP module scores monitor resource.

create(**kwargs)
Create the resource on the BigIP.

3.3. f5 61

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

62 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Mysqls(monitor)
Bases: f5.bigip.resource.Collection

BigIP MySQL monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 63

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Mysql(mysqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP MySQL monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

64 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Mssqls(monitor)
Bases: f5.bigip.resource.Collection

BigIP Mssql monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 65

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Mssql(mssqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Mssql monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

66 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Nntps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Nntps monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 67

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Nntp(nntps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Nntps monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

68 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Nones(monitor)
Bases: f5.bigip.resource.Collection

BigIP None monitor collection.

3.3. f5 69

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.NONE(nones)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP None monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

70 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 71

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Oracles(monitor)
Bases: f5.bigip.resource.Collection

BigIP Oracle monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Oracle(oracles)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Oracle monitor resource.

create(**kwargs)
Create the resource on the BigIP.

72 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 73

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Pop3s(monitor)
Bases: f5.bigip.resource.Collection

BigIP Pop3 monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

74 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Pop3(pop3s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Pop3 monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 75

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Postgresqls(monitor)
Bases: f5.bigip.resource.Collection

BigIP PostGRES SQL monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

76 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Postgresql(postgresqls)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP PostGRES SQL monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 77

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Radius_s(monitor)
Bases: f5.bigip.resource.Collection

BigIP radius monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

78 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Radius(radius_s)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP radius monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 79

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Radius_Accountings(monitor)
Bases: f5.bigip.resource.Collection

BigIP radius accounting monitor collection.

80 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Radius_Accounting(radius_accountings)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP radius accounting monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

3.3. f5 81

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

82 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Real_Servers(monitor)
Bases: f5.bigip.resource.Collection

BigIP real-server monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Real_Server(real_servers)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP real-server monitor resource.

update(**kwargs)
Change the configuration of the resource on the device.

3.3. f5 83

F5 Python SDK Documentation, Release 0.1.1

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•tmCommand attribute removed prior to PUT

•agent attribute removed prior to PUT

•post attribute removed prior to PUT

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

84 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.ltm.monitor.Rpcs(monitor)
Bases: f5.bigip.resource.Collection

BigIP Rpc monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

3.3. f5 85

F5 Python SDK Documentation, Release 0.1.1

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Rpc(rpcs)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Rpc monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

86 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Sasps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Sasp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 87

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Sasp(sasps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Sasp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

88 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Scripteds(monitor)
Bases: f5.bigip.resource.Collection

BigIP scripted monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 89

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Scripted(scripteds)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP scripted monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

90 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Sips(monitor)
Bases: f5.bigip.resource.Collection

BigIP Sip monitor collection.

3.3. f5 91

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Sip(sips)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Sip monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

92 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 93

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Smbs(monitor)
Bases: f5.bigip.resource.Collection

BigIP Smb monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Smb(smbs)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Smb monitor resource.

create(**kwargs)
Create the resource on the BigIP.

94 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 95

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Smtps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Smtp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

96 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Smtp(smtps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Smtp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

3.3. f5 97

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Snmp_Dcas(monitor)
Bases: f5.bigip.resource.Collection

BigIP SNMP DCA monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

98 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Snmp_Dca(snmp_dcas)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP SNMP DCA monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

3.3. f5 99

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Snmp_Dca_Bases(monitor)
Bases: f5.bigip.resource.Collection

BigIP SNMP DCA bases monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

100 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Snmp_Dca_Base(snmp_dca_bases)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP SNMP DCA monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 101

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Soaps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Soap monitor collection.

102 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Soap(soaps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Soap monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

3.3. f5 103

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

104 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Tcp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp(tcps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Tcp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

3.3. f5 105

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

106 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcp_Echos(monitor)
Bases: f5.bigip.resource.Collection

BigIP Tcp echo monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 107

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp_Echo(tcp_echos)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Tcp echo monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

108 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Tcp_Half_Opens(monitor)
Bases: f5.bigip.resource.Collection

BigIP Tcp half open monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 109

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Tcp_Half_Open(tcp_half_opens)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Tcp half open monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

110 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Udps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Udp monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 111

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Udp(udps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Udp monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

112 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Virtual_Locations(monitor)
Bases: f5.bigip.resource.Collection

BigIP virtual-locations monitor collection.

3.3. f5 113

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Virtual_Location(virtual_locations)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP virtual-locations monitor resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

114 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

3.3. f5 115

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Waps(monitor)
Bases: f5.bigip.resource.Collection

BigIP Wap monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Wap(waps)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Wap monitor resource.

create(**kwargs)
Create the resource on the BigIP.

116 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 117

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•defaultsFrom attribute is removed from JSON before the PUT

Parameters kwargs – keys and associated values to alter on the device

class f5.bigip.ltm.monitor.Wmis(monitor)
Bases: f5.bigip.resource.Collection

BigIP Wmi monitor collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

118 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.monitor.Wmi(wmis)
Bases: f5.bigip.ltm.monitor.UpdateMonitorMixin, f5.bigip.resource.Resource

BigIP Wmi monitor resource.

update(**kwargs)
Change the configuration of the resource on the device.

This method uses Http PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•agent attribute removed prior to PUT

•post attribute removed prior to PUT

•method attribute removed prior to PUT

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

3.3. f5 119

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

nat BigIP Local Traffic Manager (LTM) Nat module.

REST URI http://localhost/mgmt/tm/ltm/nat

GUI Path Local Traffic --> Nat

REST Kind tm:ltm:nat:*

Nats(ltm) BigIP LTM Nat collection object
Nat(nat_s) BigIP LTM Nat collection resource

node Collections and Resources
class f5.bigip.ltm.nat.Nats(ltm)

Bases: f5.bigip.resource.Collection

BigIP LTM Nat collection object

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

120 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.nat.Nat(nat_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP LTM Nat collection resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Note: If you are creating with ‘‘inheritedTrafficGroup‘ set to False you just also have a trafficGroup.

Parameters kwargs – All the key-values needed to create the resource

Returns self - A python object that represents the object’s configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

3.3. f5 121

F5 Python SDK Documentation, Release 0.1.1

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

node BigIP Local Traffic Manager (LTM) node module.

REST URI http://localhost/mgmt/tm/ltm/node

GUI Path Local Traffic --> Nodes

REST Kind tm:ltm:node:*

Nodes(ltm) BigIP LTM node collection
Node(nodes) BigIP LTM node resource

node Collections and Resources
class f5.bigip.ltm.node.Nodes(ltm)

122 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Bases: f5.bigip.resource.Collection

BigIP LTM node collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.node.Node(nodes)

Bases: f5.bigip.resource.Resource

BigIP LTM node resource

update(**kwargs)
Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•If fqdn is in the kwargs or set as an attribute, removes the autopopulate and addressFamily
keys from it if there.

3.3. f5 123

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – keys and associated values to alter on the device

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

124 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

policy BigIP Local Traffic Manager (LTM) policy module.

REST URI http://localhost/mgmt/tm/ltm/policy

GUI Path Local Traffic --> policy

REST Kind tm:ltm:policy:*

Policys(ltm) BigIP LTM policy collection.
Policy(policy_s) BigIP LTM policy resource.
Rules_s(policy) BigIP LTM policy rules sub-collection.
Rules(rules_s) BigIP LTM policy rules sub-collection resource.
Actions_s(rules) BigIP LTM policy actions sub-collection.
Actions(actions_s) BigIP LTM policy actions sub-collection resource.
Conditions_s(rules) BigIP LTM policy conditions sub-collection.
Conditions(conditions_s) BigIP LTM policy conditions sub-collection resource.

Policy Collections and Resources
class f5.bigip.ltm.policy.Policys(ltm)

Bases: f5.bigip.resource.Collection

BigIP LTM policy collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

3.3. f5 125

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.policy.Policy(policy_s)

Bases: f5.bigip.resource.Resource

BigIP LTM policy resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS

126 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Rules_s(policy)
Bases: f5.bigip.resource.Collection

BigIP LTM policy rules sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

3.3. f5 127

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Rules(rules_s)
Bases: f5.bigip.resource.Resource

BigIP LTM policy rules sub-collection resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

128 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Actions_s(rules)
Bases: f5.bigip.resource.Collection

BigIP LTM policy actions sub-collection.

3.3. f5 129

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Actions(actions_s)
Bases: f5.bigip.resource.Resource

BigIP LTM policy actions sub-collection resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

130 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

3.3. f5 131

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.policy.Conditions_s(rules)
Bases: f5.bigip.resource.Collection

BigIP LTM policy conditions sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.policy.Conditions(conditions_s)
Bases: f5.bigip.resource.Resource

BigIP LTM policy conditions sub-collection resource.

132 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

3.3. f5 133

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

pool BigIP Local Traffic Manager (LTM) pool module.

REST URI http://localhost/mgmt/tm/ltm/pool

GUI Path Local Traffic --> Pools

REST Kind tm:ltm:pools:*

Pools(ltm) BigIP LTM pool collection
Pool(pool_s) BigIP LTM pool resource
Members_s(pool) BigIP LTM pool members sub-collection
Member

Pool Collections and Resources
class f5.bigip.ltm.pool.Pools(ltm)

Bases: f5.bigip.resource.Collection

BigIP LTM pool collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

134 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.pool.Pool(pool_s)

Bases: f5.bigip.resource.Resource

BigIP LTM pool resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

3.3. f5 135

F5 Python SDK Documentation, Release 0.1.1

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.ltm.pool.Members_s(pool)
Bases: f5.bigip.resource.Collection

BigIP LTM pool members sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

136 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.ltm.pool.Members(members_s)
Bases: f5.bigip.resource.Resource

BigIP LTM pool members sub-collection resource

update(**kwargs)
Call this to change the configuration of the service on the device.

This method uses HTTP PUT alter the service state on the device.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device. Various edge cases are handled:

•read-only attributes that are unchangeable are removed

•If fqdn is in the kwargs or set as an attribute, removes the autopopulate and addressFamily
keys from it if there.

Parameters

• state= – state value or None required.

• kwargs – keys and associated values to alter on the device

3.3. f5 137

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

138 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

rule BigIP Local Traffic Manager (LTM) rule module.

REST URI http://localhost/mgmt/tm/ltm/rule

GUI Path Local Traffic --> Rules

REST Kind tm:ltm:rule:*

Rules(ltm) BigIP LTM rule collection
Rule(rule_s) BigIP LTM rule resource

Rule Collections and Resources
class f5.bigip.ltm.rule.Rules(ltm)

Bases: f5.bigip.resource.Collection

BigIP LTM rule collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

3.3. f5 139

F5 Python SDK Documentation, Release 0.1.1

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.rule.Rule(rule_s)

Bases: f5.bigip.resource.Resource

BigIP LTM rule resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

140 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

snat BigIP Local Traffic Manager (LTM) Snat module.

REST URI http://localhost/mgmt/tm/ltm/snat

GUI Path Local Traffic --> Snat

REST Kind tm:ltm:snat:*

Snats(ltm) BigIP LTM Snat collection
Snat(snat_s) BigIP LTM Snat resource

Snat Collections and Resources
class f5.bigip.ltm.snat.Snats(ltm)

Bases: f5.bigip.resource.Collection

BigIP LTM Snat collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

3.3. f5 141

F5 Python SDK Documentation, Release 0.1.1

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.snat.Snat(snat_s)

Bases: f5.bigip.resource.Resource

BigIP LTM Snat resource

create(**kwargs)
Call this to create a new snat on the BigIP.

Uses HTTP POST to ‘containing’ URI to create a service associated with a new URI on the device.

Note this is the one of two fundamental Resource operations that returns a different uri (in the re-
turned object) than the uri the operation was called on. The returned uri can be accessed as Ob-
ject.selfLink, the actual uri used by REST operations on the object is Object._meta_data[’uri’]. The
_meta_data[’uri’] is the same as Object.selfLink with the substring ‘localhost’ replaced with the value
of Object._meta_data[’bigip’]._meta_data[’hostname’], and without query args, or hash fragments.

The following is done prior to the POST * Ensures that one of automap, snatpool, translastion

parameter is passed in.

Parameters kwargs – All the key-values needed to create the resource

Returns An instance of the Python object that represents the device’s

uri-published resource. The uri of the resource is part of the object’s _meta_data.

delete(**kwargs)
Delete the resource on the BigIP.

142 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

3.3. f5 143

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

ssl

virtual BigIP Local Traffic Manager (LTM) virtual module.

REST URI http://localhost/mgmt/tm/ltm/virtual

GUI Path Local Traffic --> Virtual Servers

REST Kind tm:ltm:virtual:*

Virtuals(ltm) BigIP LTM virtual collection
Virtual(virtual_s) BigIP LTM virtual resource

Snat Collections and Resources
class f5.bigip.ltm.virtual.Virtuals(ltm)

Bases: f5.bigip.resource.Collection

BigIP LTM virtual collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

144 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.ltm.virtual.Virtual(virtual_s)

Bases: f5.bigip.resource.Resource

BigIP LTM virtual resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

3.3. f5 145

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

f5.bigip.net

Module Conents BigIP net module

REST URI http://localhost/mgmt/tm/net/

GUI Path Network

REST Kind tm:net:*

arp BigIP Network ARP module.
fdb Directory: net module: fdb.
interface BigIP Network interface module.
route BigIP Network route module.
route_domain Directory: net module: route-domain.
selfip BigIP Network self-ip module.
tunnels BigIP Network tunnels module.
vlan BigIP Network vlan module.

Submodule List

146 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Submodules

arp BigIP Network ARP module.

REST URI http://localhost/mgmt/tm/net/arp

GUI Path Network --> ARP

REST Kind tm:net:arp:*

Arps(net) BigIP network ARP collection
Arp(arp_s) BigIP network ARP resource

ARP Collections and Resources
class f5.bigip.net.arp.Arps(net)

Bases: f5.bigip.resource.Collection

BigIP network ARP collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

3.3. f5 147

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.arp.Arp(arp_s)

Bases: f5.bigip.resource.Resource

BigIP network ARP resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

148 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

interface BigIP Network interface module.

REST URI http://localhost/mgmt/tm/net/interface

GUI Path Network --> Interfaces

REST Kind tm:net:interface:*

Interfaces(net) BigIP network interface collection
Interface(interface_s) BigIP network interface collection

Interface Collections and Resources
class f5.bigip.net.interface.Interfaces(net)

Bases: f5.bigip.resource.Collection

BigIP network interface collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

3.3. f5 149

F5 Python SDK Documentation, Release 0.1.1

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.interface.Interface(interface_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP network interface collection

create(**kwargs)
Create is not supported for interfaces.

Raises UnsupportedOperation

delete()
Delete is not supported for interfaces.

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS

150 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

route BigIP Network route module.

REST URI http://localhost/mgmt/tm/net/route

GUI Path Network --> Routes

REST Kind tm:net:route:*

Routes(net) BigIP network route collection
Route(route_s) BigIP network route resource

Route Collections and Resources
class f5.bigip.net.route.Routes(net)

Bases: f5.bigip.resource.Collection

3.3. f5 151

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

BigIP network route collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.route.Route(route_s)

Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP network route resource

create(**kwargs)
Create a Route on the BigIP and the associated python object.

One of the following gateways is required when creating the route objects: blackhole, gw,
tmInterface, pool.

Params kwargs keyword arguments passed in from create call

Raises KindTypeMismatch

Raises MissingRequiredCreationParameter

Raises HTTPError

152 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Returns Python Route object

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

3.3. f5 153

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

route_domain Directory: net module: route-domain.

REST URI https://localhost/mgmt/tm/net/route-domain?ver=11.6.0

GUI Path XXX

REST Kind tm:net:route-domain:*

Route_Domains(net) A Collection concrete subclass docstring.
Route_Domain(Route_Domains) A Resource concrete subclass.

Route Collections and Resources
class f5.bigip.net.route_domain.Route_Domains(net)

Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

154 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.route_domain.Route_Domain(Route_Domains)

Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

3.3. f5 155

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

selfip BigIP Network self-ip module.

Note: Self IPs path does not match their kind or URI because the string self causes problems in Python because it
is a reserved word.

REST URI http://localhost/mgmt/tm/net/self

GUI Path Network --> Self IPs

REST Kind tm:net:self:*

Selfips(net) BigIP network Self-IP collection
Selfip(selfip_s) BigIP Self-IP resource

Selfip Collections and Resources
class f5.bigip.net.selfip.Selfips(net)

Bases: f5.bigip.resource.Collection

BigIP network Self-IP collection

156 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Note: The objects in the collection are actually called ‘self’ in iControlREST, but obviously this will cause
problems in Python so we changed its name to Selfip.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.selfip.Selfip(selfip_s)

Bases: f5.bigip.resource.Resource

BigIP Self-IP resource

Use this object to create, refresh, update, delete, and load self ip configuration on the BIGIP. This requires that
a VLAN object be present on the system and that object’s :attrib:‘fullPath‘ be used as the VLAN name.

The address that is used for create is a <ipaddress>/<netmask>. For example 192.168.1.1/32.

Note: The object is actually called self in iControlREST, but obviously this will cause problems in Python
so we changed its name to Selfip.

3.3. f5 157

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

158 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

tunnels BigIP Network tunnels module.

REST URI http://localhost/mgmt/tm/net/tunnels

GUI Path Network --> tunnels

REST Kind tm:net:tunnels:*

Tunnels_s(net) BigIP network tunnels collection
Tunnels(tunnels_s) BigIP network tunnels resource (collection for GRE, Tunnel, VXLANs
Tunnel(tunnels) BigIP tunnels tunnel resource
Gres(tunnels_s) BigIP tunnels GRE sub-collection
Gre(gres) BigIP tunnels GRE sub-collection resource
Vxlans(tunnels_s) BigIP tunnels VXLAN sub-collection
Vxlan(vxlans) BigIP tunnels VXLAN sub-collection resource

Tunnels Collections and Resources
class f5.bigip.net.tunnels.Tunnels_s(net)

Bases: f5.bigip.resource.Collection

BigIP network tunnels collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must

3.3. f5 159

F5 Python SDK Documentation, Release 0.1.1

populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.tunnels.Tunnels(tunnels_s)

Bases: f5.bigip.resource.Collection

BigIP network tunnels resource (collection for GRE, Tunnel, VXLANs

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

160 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Tunnel(tunnels)
Bases: f5.bigip.resource.Resource

BigIP tunnels tunnel resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

3.3. f5 161

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.tunnels.Gres(tunnels_s)
Bases: f5.bigip.resource.Collection

BigIP tunnels GRE sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

162 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Gre(gres)
Bases: f5.bigip.resource.Resource

BigIP tunnels GRE sub-collection resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

3.3. f5 163

F5 Python SDK Documentation, Release 0.1.1

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.tunnels.Vxlans(tunnels_s)
Bases: f5.bigip.resource.Collection

BigIP tunnels VXLAN sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

164 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.tunnels.Vxlan(vxlans)
Bases: f5.bigip.resource.Resource

BigIP tunnels VXLAN sub-collection resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

3.3. f5 165

F5 Python SDK Documentation, Release 0.1.1

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

166 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

vlan BigIP Network vlan module.

REST URI http://localhost/mgmt/tm/net/vlan

GUI Path Network --> Vlans

REST Kind tm:net:vlan:*

Vlans(net) BigIP network Vlan collection.
Vlan(vlan_s) BigIP network Vlan resource.
Interfaces_s(vlan) BigIP network Vlan interface collection.
Interfaces(interfaces_s) BigIP network Vlan interface resource.

Vlan Collections and Resources
class f5.bigip.net.vlan.Vlans(net)

Bases: f5.bigip.resource.Collection

BigIP network Vlan collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

3.3. f5 167

F5 Python SDK Documentation, Release 0.1.1

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.vlan.Vlan(vlan_s)

Bases: f5.bigip.resource.Resource

BigIP network Vlan resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

168 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.vlan.Interfaces_s(vlan)
Bases: f5.bigip.resource.Collection

BigIP network Vlan interface collection.

Note: Not to be confused with tm/mgmt/net/interface. This is object is actually called interfaces
with an s by the BIGIP’s REST API.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

3.3. f5 169

F5 Python SDK Documentation, Release 0.1.1

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.vlan.Interfaces(interfaces_s)
Bases: f5.bigip.resource.Resource, f5.bigip.mixins.ExclusiveAttributesMixin

BigIP network Vlan interface resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

170 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

fdb Directory: net module: fdb.

REST URI https://localhost/mgmt/tm/net/fdb?ver=11.6.0

GUI Path XXX

REST Kind tm:net:fdb:*

Fdbs(net) A Collection concrete subclass docstring.
Tunnel(Tunnels) A Resource concrete subclass.

Continued on next page

3.3. f5 171

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Table 3.23 – continued from previous page
Tunnels(fdb) A Collection concrete subclass docstring.
Vlans(fdb) A Collection concrete subclass docstring.

FDB Collections and Resources
class f5.bigip.net.fdb.Fdbs(net)

Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.net.fdb.Tunnel(Tunnels)

Bases: f5.bigip.resource.Resource

A Resource concrete subclass.

create(**kwargs)
Create the resource on the BigIP.

172 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

3.3. f5 173

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.net.fdb.Tunnels(fdb)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

174 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.net.fdb.Vlans(fdb)
Bases: f5.bigip.resource.Collection

A Collection concrete subclass docstring.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

f5.bigip.sys

Module Contents BigIP System (sys) module

REST URI http://localhost/mgmt/tm/sys/

GUI Path System

3.3. f5 175

F5 Python SDK Documentation, Release 0.1.1

REST Kind tm:sys:*

application BigIP iApp (application) module
db BigIP db module
failover BigIP system failover module
folder BigIP system folder (partition) module
global_settings BigIP system global-settings module
ntp BigIP system ntp module
performance BigIP system peformance stats module.

Submodule List

Submodules

application BigIP iApp (application) module

REST URI http://localhost/mgmt/sys/application/

GUI Path iApps

REST Kind tm:sys:application:*

Applications(sys) BigIP iApp collection.
Aplscripts(application) BigIP iApp script collection.
Aplscript(apl_script_s) BigIP iApp script resource.
Customstats(application) BigIP iApp custom stats sub-collection.
Customstat(custom_stat_s) BigIP iApp custom stats sub-collection resource.
Services(application) BigIP iApp service sub-collection.
Service(service_s) BigIP iApp service sub-collection resource
Templates(application) BigIP iApp template sub-collection
Template(template_s) BigIP iApp template sub-collection resource

Application Collections and Resources
class f5.bigip.sys.application.Applications(sys)

Bases: f5.bigip.resource.Collection

BigIP iApp collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

176 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.application.Aplscripts(application)

Bases: f5.bigip.resource.Collection

BigIP iApp script collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

3.3. f5 177

F5 Python SDK Documentation, Release 0.1.1

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Aplscript(apl_script_s)
Bases: f5.bigip.resource.Resource

BigIP iApp script resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

178 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.application.Customstats(application)
Bases: f5.bigip.resource.Collection

BigIP iApp custom stats sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

3.3. f5 179

F5 Python SDK Documentation, Release 0.1.1

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Customstat(custom_stat_s)
Bases: f5.bigip.resource.Resource

BigIP iApp custom stats sub-collection resource.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

180 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.application.Services(application)
Bases: f5.bigip.resource.Collection

BigIP iApp service sub-collection.

create(**kwargs)
Implement this by overriding it in a subclass of Resource

3.3. f5 181

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Service(service_s)
Bases: f5.bigip.resource.Resource

BigIP iApp service sub-collection resource

update(**kwargs)
Push local updates to the object on the device.

Params kwargs keyword arguments for accessing/modifying the object

Returns updated Python object

exists(**kwargs)
Check for the existence of the named object on the BigIP

Override of resource.Resource exists() to build proper URI unique to service resources.

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

182 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

class f5.bigip.sys.application.Templates(application)
Bases: f5.bigip.resource.Collection

3.3. f5 183

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

BigIP iApp template sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.sys.application.Template(template_s)
Bases: f5.bigip.resource.Resource

BigIP iApp template sub-collection resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

184 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

3.3. f5 185

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

db BigIP db module

REST URI http://localhost/mgmt/sys/db/

GUI Path N/A

REST Kind tm:sys:db:*

Dbs(sys) BigIP db collection
Db(dbs) BigIP db resource

DB Collections and Resources
class f5.bigip.sys.db.Dbs(sys)

Bases: f5.bigip.resource.Collection

BigIP db collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the

186 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.db.Db(dbs)

Bases: f5.bigip.resource.Resource

BigIP db resource

Note: db objects are read-only.

create(**kwargs)
Create is not supported for db resources.

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for db resources.

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

3.3. f5 187

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

failover BigIP system failover module

REST URI http://localhost/mgmt/tm/sys/failover

GUI Path System --> Failover

REST Kind tm:sys:failover:*

Failover(sys) BigIP Failover stats and state change.

Failover Resources
class f5.bigip.sys.failover.Failover(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP Failover stats and state change.

The failover object only supports load, update, and refresh because it is an unnamed resource.

To force the unit to standby call the update() method as follows:

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

update(**kwargs)
Update is not supported for Failover

Raises UnsupportedOperation

toggle_standby(**kwargs)
Toggle the standby status of a traffic group.

WARNING: This method which used POST obtains json keys from the device that are not available in the
response to a GET against the same URI.

Unique to refresh/GET: u”apiRawValues” u”selfLink” Unique to toggle_standby/POST: u”command”
u”standby” u”traffic-group”

188 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

folder BigIP system folder (partition) module

REST URI http://localhost/mgmt/tm/sys/folder

GUI Path System --> Users --> Partition List

REST Kind tm:sys:folder:*

Folders(sys) BigIP system folder collection.
Folder(folder_s)

Folder Collections and Resources
class f5.bigip.sys.folder.Folders(sys)

Bases: f5.bigip.resource.Collection

BigIP system folder collection.

These are what we refer to as partition in the SDK.

3.3. f5 189

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

global_settings BigIP system global-settings module

REST URI http://localhost/mgmt/tm/sys/global-settings

GUI Path System --> Configuration --> Device

REST Kind tm:sys:global-settings:*

Global_Settings(sys) BigIP system global-settings resource

Global_Settings Resources
class f5.bigip.sys.global_settings.Global_Settings(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP system global-settings resource

190 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

The global_settings object only supports load and update because it is an unnamed resource.

Note: This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

3.3. f5 191

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

ntp BigIP system ntp module

REST URI http://localhost/mgmt/tm/sys/ntp

GUI Path System --> Configuration --> Device --> NTP

REST Kind tm:sys:ntp:*

Ntp(sys) BigIP system NTP unnamed resource
Restricts(ntp) BigIP system NTP restrict sub-collection
Restrict(restricts) BigIP system NTP restrict sub-collection resource

NTP Resources and Subcollections
class f5.bigip.sys.ntp.Ntp(sys)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP system NTP unnamed resource

This is an unnamed resource so it has not ~Partition~Name pattern at the end of its URI.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

192 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

class f5.bigip.sys.ntp.Restricts(ntp)
Bases: f5.bigip.resource.Collection

BigIP system NTP restrict sub-collection

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

3.3. f5 193

F5 Python SDK Documentation, Release 0.1.1

class f5.bigip.sys.ntp.Restrict(restricts)
Bases: f5.bigip.resource.Resource

BigIP system NTP restrict sub-collection resource

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

raw
Display the attributes that the current object has and their values.

194 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

performance BigIP system peformance stats module.

REST URI http://localhost/mgmt/tm/sys/performance

GUI Path System --> Users --> Partition List

REST Kind tm:sys:performance:*

Performance(sys) BigIP system performace stats collection
All_Stats(performance) BigIP system performace stats unnamed resource

Performace Resources and Subcollections
class f5.bigip.sys.performance.Performance(sys)

Bases: f5.bigip.resource.Collection

BigIP system performace stats collection

get_collection()
Performance collections are not proper BigIP collection objects.

Raises UnsupportedOperation

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

3.3. f5 195

F5 Python SDK Documentation, Release 0.1.1

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource
class f5.bigip.sys.performance.All_Stats(performance)

Bases: f5.bigip.mixins.UnnamedResourceMixin, f5.bigip.resource.Resource

BigIP system performace stats unnamed resource

update(**kwargs)
Update is not supported for statistics.

Raises UnsupportedOperation

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all

196 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

resource module

This module provides classes that specify how RESTful resources are handled.

THE MOST IMPORTANT THING TO KNOW ABOUT THIS API IS THAT YOU CAN DIRECTLY INFER REST
URIs FROM PYTHON EXPRESSIONS, AND VICE VERSA.

Examples:

• Expression: bigip = BigIP(‘a’, ‘b’, ‘c’)

• URI Returned: https://a/mgmt/tm/

• Expression: bigip.ltm

• URI Returned: https://a/mgmt/tm/ltm/

• Expression: pools1 = bigip.ltm.pools

• URI Returned: https://a/mgmt/tm/ltm/pool

• Expression: pool_a = pools1.create(partition=”Common”, name=”foo”)

• URI Returned: https://a/mgmt/tm/ltm/pool/~Common~foo

There are different types of resources published by the BigIP REST Server, they are represented by the classes in this
module.

We refer to a server-provided resource as a “service”. Thus far all URI referenced resources are “services” in this
sense.

We use methods named Create, Refresh, Update, Load, and Delete to manipulate BigIP device services.

Methods:

• create – uses HTTP POST, creates a new resource and with its own URI on the device

• refresh – uses HTTP GET, obtains the state of a device resource, and sets the representing Python Resource
Object tracks device state via its attrs

• update – uses HTTP PUT, submits a new configuration to the device resource and sets the Resource attrs
to the state the device reports

• load – uses HTTP GET, obtains the state of an existing resource on the device and sets the Resource attrs to that
state

• delete – uses HTTP DELETE, removes the resource from the device, and sets self.__dict__ to {‘deleted’: True}

Available Classes:

• ResourceBase – only refresh is generally supported in all resource types, this class provides refresh. Re-
sourceBase objects are usually instantiated via setting lazy attributes. ResourceBase provides a constructor
to match its call in LazyAttributeMixin.__getattr__. The expected behavior is that all resource subclasses
depend on this constructor to correctly set their self._meta_data[’uri’]. All ResourceBase objects (except
BigIPs) have a container (BigIPs contain themselves). The container is the object the ResourceBase is an
attribute of.

• OrganizingCollection – These resources support lists of “reference” “links”. These are json blobs without
a Python class representation.

Example URI_path: /mgmt/tm/ltm/

3.3. f5 197

https://a/mgmt/tm/
https://a/mgmt/tm/ltm/
https://a/mgmt/tm/ltm/pool
https://a/mgmt/tm/ltm/pool/~Common~foo

F5 Python SDK Documentation, Release 0.1.1

• Collection – These resources support lists of ResourceBase Objects. Example URI_path:
/mgmt/tm/ltm/nat

• Resource – These resources are the only resources that support create, update, and delete operations.
Because they support HTTP post (via _create) they uniquely depend on 2 uri’s, a uri that supports the
creating post, and the returned uri of the newly created resource.

Example URI_path: /mgmt/tm/ltm/nat/~Common~testnat1

exception f5.bigip.resource.KindTypeMismatch
Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incorrect for the Resource type.

exception f5.bigip.resource.DeviceProvidesIncompatibleKey
Bases: f5.sdk_exception.F5SDKError

Raise this when server JSON keys are incompatible with Python.

exception f5.bigip.resource.InvalidResource
Bases: f5.sdk_exception.F5SDKError

Raise this when a caller tries to invoke an unsupported CRUDL op.

All resources support refresh and raw. Only Resource‘s support load, create, update, and delete.

exception f5.bigip.resource.MissingRequiredCreationParameter
Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to create different Resources.

exception f5.bigip.resource.MissingRequiredReadParameter
Bases: f5.sdk_exception.F5SDKError

Various values MUST be provided to refresh some Resources.

exception f5.bigip.resource.UnregisteredKind
Bases: f5.sdk_exception.F5SDKError

The returned server JSON kind key wasn’t expected by this Resource.

exception f5.bigip.resource.GenerationMismatch
Bases: f5.sdk_exception.F5SDKError

The server reported BigIP is not the expacted value.

exception f5.bigip.resource.InvalidForceType
Bases: exceptions.ValueError

Must be of type bool.

exception f5.bigip.resource.URICreationCollision
Bases: f5.sdk_exception.F5SDKError

self._meta_data[’uri’] can only be assigned once. In create or load.

exception f5.bigip.resource.UnsupportedOperation
Bases: f5.sdk_exception.F5SDKError

Object does not support the method that was called.

class f5.bigip.resource.ResourceBase(container)
Bases: f5.bigip.mixins.LazyAttributeMixin, f5.bigip.mixins.ToDictMixin

Base class for all BigIP iControl REST API endpoints.

198 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

The BigIP is represented by an object that converts device published uri’s into Python objects. Each uri maps
to a Python object. The mechanism for instantiating these objects is the __getattr__ Special Function in the
LazyAttributeMixin. When a registered attribute is dot referenced, on the device object (e.g. bigip.ltm or
simply bigip), an appropriate object is instantiated and attributed to the referencing object:

bigip.ltm = LTM(bigip)
bigip.ltm.nats
nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

This can be shortened to just the last line:

nat1 = bigip.ltm.nats.nat.create('Foo', 'Bar', '0.1.2.3', '1.2.3.4')

Critically this enforces a convention relating device published uris to API objects, in a hierarchy similar to the
uri paths. I.E. the uri corresponding to a Nats object is mgmt/tm/ltm/nat/. If you query the bigip’s uri
(e.g. print(bigip._meta_data[’uri’])), you’ll see that it ends in: /mgmt/tm/, if you query the ltm object’s uri
(e.g. print(bigip.ltm._meta_data[’uri’])) you’ll see it ends in /mgmt/tm/ltm/.

In general the objects build a required self._meta_data[’uri’] attribute by: 1. Inheriting this class. 2. calling
super(Subclass, self).__init__(container) 3. self.uri = self.container_uri[’uri’] + ‘/’ + self.__class__.__name__

The net result is a succinct mapping between uri’s and objects, that represents objects in a hierarchical relation-
ship similar to the devices uri path hierarchy.

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

class f5.bigip.resource.OrganizingCollection(bigip)
Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect resources under them.

OrganizingCollection objects fulfill the following functions:

•represent a uri path fragment immediately ‘below’ /mgmt/tm

•provide a list of dictionaries that contain uri’s to other resources on the device.

3.3. f5 199

F5 Python SDK Documentation, Release 0.1.1

get_collection(**kwargs)
Call to obtain a list of the reference dicts in the instance items

Returns List of self.items

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.resource.Collection(container)
Bases: f5.bigip.resource.ResourceBase

Base class for objects that collect a list of Resources

The Collection Resource is responsible for providing a list of Python objects, where each object represents a
unique URI, the URI contains the URI of the Collection at the front of its path, and the ‘kind’ of the URI-
associated-JSON has been registered with the attribute registry of the Collection subclass.

Note: Any subclass of this base class must have s at the end of its name unless it ends in s then it must have
_s.

get_collection(**kwargs)
Get an iterator of Python Resource objects that represent URIs.

The returned objects are Pythonic Resource‘s that map to the most recently ‘refreshed state of uris-
resources published by the device. In order to instantiate the correct types, the concrete subclass must
populate its registry with acceptable types, based on the kind field returned by the REST server.

Note: This method implies a single REST transaction with the Collection subclass URI.

Raises UnregisteredKind

Returns list of reference dicts and Python Resource objects

200 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

create(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

delete(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

update(**kwargs)
Implement this by overriding it in a subclass of Resource

Raises InvalidResource

class f5.bigip.resource.Resource(container)
Bases: f5.bigip.resource.ResourceBase

Base class to represent a Configurable Resource on the device.

Warning: Objects instantiated from subclasses of Resource do NOT contain a URI (self._meta_data[’uri’])
at instantiation!

Resource objects provide the interface for the Creation of new services on the device. Once a new service
has been created, (via self.create or self.load), the instance constructs its URI and stores it as
self._meta_data[’uri’].

It is an error to attempt to call create() or load() on an instance more than once.
self._meta_data[’uri’] MUST not be changed after creation or load.

Note: creation query args, and creation hash fragments are stored as separate _meta_data values.

By “Configurable” we mean that submitting JSON via the PUT method to the URI managed by subclasses of
Resource, changes the state of the corresponding service on the device.

It also means that the URI supports DELETE.

create(**kwargs)
Create the resource on the BigIP.

Uses HTTP POST to the collection URI to create a resource associated with a new unique URI on the
device.

Parameters kwargs – All the key-values needed to create the resource

3.3. f5 201

F5 Python SDK Documentation, Release 0.1.1

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.post method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: self - A python object that represents the object’s

configuration and state on the BigIP.

load(**kwargs)
Load an already configured service into this instance.

This method uses HTTP GET to obtain a resource from the BigIP.

Parameters kwargs – typically contains “name” and “partition”

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: a Resource Instance (with a populated _meta_data[’uri’])

update(**kwargs)
Update the configuration of the resource on the BigIP.

This method uses HTTP PUT alter the resource state on the BigIP.

The attributes of the instance will be packaged as a dictionary. That dictionary will be updated with kwargs.
It is then submitted as JSON to the device.

Various edge cases are handled: * read-only attributes that are unchangeable are removed

Parameters kwargs – keys and associated values to alter on the device

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.put method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

delete(**kwargs)
Delete the resource on the BigIP.

Uses HTTP DELETE to delete the resource on the BigIP.

After this method is called, and status_code 200 response is received instance.__dict__ is replace
with {’deleted’: True}

Parameters kwargs – The only current use is to pass kwargs to the requests

API. If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying re-
quests.session.delete method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS!

exists(**kwargs)
Check for the existence of the named object on the BigIP

Sends an HTTP GET to the URI of the named object and if it fails with a :exc:~requests.HTTPError‘
exception it checks the exception for status code of 404 and returns False in that case.

If the GET is successful it returns True.

For any other errors are raised as-is.

Parameters kwargs – Keyword arguments required to get objects

NOTE: If kwargs has a ‘requests_params’ key the corresponding dict will be passed to the underlying
requests.session.get method where it will be handled according to that API. THIS IS HOW TO PASS
QUERY-ARGS! :returns: bool – The objects exists on BigIP or not. :raises: requests.HTTPError,
Any HTTP error that was not status

code 404.

202 Chapter 3. Detailed Documentation

http://docs.python-requests.org/en/latest/api/#requests.HTTPError

F5 Python SDK Documentation, Release 0.1.1

raw
Display the attributes that the current object has and their values.

Returns A dictionary of attributes and their values

refresh(**kwargs)
Use this to make the device resource be represented by self.

This method makes an HTTP GET query against the device service. This method is run for its side-
effects on self. If successful the instance attribute __dict__ is replaced with the dict representing the
device state. To figure out what that state is, run a subsequest query of the object like this: As with all
CURDLE methods use a “requests_params” dict to pass parameters to requests.session.HTTPMETHOD.
See test_requests_params.py for an example. >>> resource_obj.refresh() >>> print(resource_obj.raw)

mixins module

class f5.bigip.mixins.ToDictMixin
Bases: object

Convert an object’s attributes to a dictionary

exception f5.bigip.mixins.LazyAttributesRequired
Bases: f5.sdk_exception.F5SDKError

Raised when a object accesses a lazy attribute that is not listed

class f5.bigip.mixins.LazyAttributeMixin
Bases: object

Allow attributes to be created lazily based on the allowed values

class f5.bigip.mixins.ExclusiveAttributesMixin
Bases: object

Overrides __setattr__ to remove exclusive attrs from the object.

class f5.bigip.mixins.UnnamedResourceMixin
Bases: object

This makes a resource object work if there is no name.

These objects do not support create or delete and are often found as Resources that are under an organiz-
ing collection. For example the mgmt/tm/sys/global-settings is one of these and has a kind of tm:sys:global-
settings:global-settingsstate and the URI does not match the kind.

create(**kwargs)
Create is not supported for unnamed resources

Raises UnsupportedOperation

delete(**kwargs)
Delete is not supported for unnamed resources

Raises UnsupportedOperation

3.3. f5 203

F5 Python SDK Documentation, Release 0.1.1

f5.common

Subpackages

Submodules

f5.common.constants module

f5.common.iapp_parser module

class f5.common.iapp_parser.IappParser(template_str)
Bases: object

template_sections = [u’presentation’, u’implementation’, u’html-help’, u’role-acl’]

tcl_list_for_attr_re = ‘{(\\s*\\w+\\s*)+}’

tcl_list_for_section_re = ‘(\\s*\\w+\\s*)+’

section_map = {u’html-help’: u’htmlHelp’, u’role-acl’: u’roleAcl’}

attr_map = {u’requires-modules’: u’requiresModules’}

sections_not_required = [u’html-help’, u’role-acl’]

tcl_list_patterns = {u’requires-modules’: ‘{(\\s*\\w+\\s*)+}’, u’role-acl’: ‘(\\s*\\w+\\s*)+’}

template_attrs = [u’description’, u’partition’, u’requires-modules’]

parse_template()
Parse the template string into a dict.

Find the (large) inner sections first, save them, and remove them from a modified string. Then find the
template attributes in the modified string.

Returns dictionary of parsed template

exception f5.common.iapp_parser.EmptyTemplateException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.CurlyBraceMismatchException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.NonextantSectionException
Bases: f5.sdk_exception.F5SDKError

args

message

exception f5.common.iapp_parser.NonextantTemplateNameException
Bases: f5.sdk_exception.F5SDKError

args

message

204 Chapter 3. Detailed Documentation

F5 Python SDK Documentation, Release 0.1.1

exception f5.common.iapp_parser.MalformedTCLListException
Bases: f5.sdk_exception.F5SDKError

args

message

f5.common.logger module

class f5.common.logger.Log
Bases: object

static debug(prefix, msg)

static error(prefix, msg)

static crit(prefix, msg)

static info(prefix, msg)

Module contents

f5.sdk_exception

A base exception for all exceptions in this library.

Base Exception

F5SDKError Import and subclass this exception in all exceptions in this library.

exception f5.sdk_exception.F5SDKError
Bases: exceptions.Exception

Import and subclass this exception in all exceptions in this library.

3.3. f5 205

F5 Python SDK Documentation, Release 0.1.1

206 Chapter 3. Detailed Documentation

CHAPTER 4

Contact

f5_common_python@f5.com

207

mailto:f5_common_python@f5.com

F5 Python SDK Documentation, Release 0.1.1

208 Chapter 4. Contact

CHAPTER 5

Copyright

Copyright 2014-2016 F5 Networks Inc.

209

F5 Python SDK Documentation, Release 0.1.1

210 Chapter 5. Copyright

CHAPTER 6

Support

Maintenance and support of the unmodified F5 code is provided only to customers who have an existing support con-
tract, purchased separately subject to F5’s support policies available at http://www.f5.com/about/guidelines-policies/
and http://askf5.com. F5 will not provide maintenance and support services of modified F5 code or code that does not
have an existing support contract.

211

http://www.f5.com/about/guidelines-policies/
http://askf5.com

F5 Python SDK Documentation, Release 0.1.1

212 Chapter 6. Support

CHAPTER 7

License

7.1 Apache V2.0

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

7.2 Contributor License Agreement

Individuals or business entities who contribute to this project must have completed and submitted the F5 Contributor
License Agreement to Openstack_CLA@f5.com prior to their code submission being included in this project.

213

http://www.apache.org/licenses/LICENSE-2.0
http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html
http://f5-openstack-docs.readthedocs.org/en/latest/cla_landing.html
mailto:Openstack_CLA@f5.com

F5 Python SDK Documentation, Release 0.1.1

214 Chapter 7. License

Python Module Index

f
f5, 205
f5.bigip, 20
f5.bigip.cm, 22
f5.bigip.cm.device, 22
f5.bigip.cm.device_group, 25
f5.bigip.cm.traffic_group, 29
f5.bigip.ltm, 32
f5.bigip.ltm.monitor, 33
f5.bigip.ltm.nat, 120
f5.bigip.ltm.node, 122
f5.bigip.ltm.policy, 125
f5.bigip.ltm.pool, 134
f5.bigip.ltm.rule, 139
f5.bigip.ltm.snat, 141
f5.bigip.ltm.virtual, 144
f5.bigip.mixins, 203
f5.bigip.net, 146
f5.bigip.net.arp, 147
f5.bigip.net.fdb, 171
f5.bigip.net.interface, 149
f5.bigip.net.route, 151
f5.bigip.net.route_domain, 154
f5.bigip.net.selfip, 156
f5.bigip.net.tunnels, 159
f5.bigip.net.vlan, 167
f5.bigip.resource, 197
f5.bigip.sys, 175
f5.bigip.sys.application, 176
f5.bigip.sys.db, 186
f5.bigip.sys.failover, 188
f5.bigip.sys.folder, 189
f5.bigip.sys.global_settings, 190
f5.bigip.sys.ntp, 192
f5.bigip.sys.performance, 195
f5.common, 205
f5.common.constants, 204
f5.common.iapp_parser, 204
f5.common.logger, 205
f5.sdk_exception, 205

215

F5 Python SDK Documentation, Release 0.1.1

216 Python Module Index

Index

A
Actions (class in f5.bigip.ltm.policy), 130
Actions_s (class in f5.bigip.ltm.policy), 129
All_Stats (class in f5.bigip.sys.performance), 196
Aplscript (class in f5.bigip.sys.application), 178
Aplscripts (class in f5.bigip.sys.application), 177
Applications (class in f5.bigip.sys.application), 176
args (f5.common.iapp_parser.CurlyBraceMismatchException

attribute), 204
args (f5.common.iapp_parser.EmptyTemplateException

attribute), 204
args (f5.common.iapp_parser.MalformedTCLListException

attribute), 205
args (f5.common.iapp_parser.NonextantSectionException

attribute), 204
args (f5.common.iapp_parser.NonextantTemplateNameException

attribute), 204
Arp (class in f5.bigip.net.arp), 148
Arps (class in f5.bigip.net.arp), 147
attr_map (f5.common.iapp_parser.IappParser attribute),

204

B
BigIP (class in f5.bigip), 21

C
Cm (class in f5.bigip.cm), 22
Collection (class in f5.bigip.resource), 200
Conditions (class in f5.bigip.ltm.policy), 132
Conditions_s (class in f5.bigip.ltm.policy), 132
create() (f5.bigip.BigIP method), 21
create() (f5.bigip.cm.Cm method), 22
create() (f5.bigip.cm.device.Device method), 23
create() (f5.bigip.cm.device.Devices method), 23
create() (f5.bigip.cm.device_group.Device_Group

method), 26
create() (f5.bigip.cm.device_group.Device_Groups

method), 25
create() (f5.bigip.cm.device_group.Devices method), 28
create() (f5.bigip.cm.device_group.Devices_s method),

27

create() (f5.bigip.cm.traffic_group.Traffic_Group
method), 30

create() (f5.bigip.cm.traffic_group.Traffic_Groups
method), 29

create() (f5.bigip.ltm.Ltm method), 32
create() (f5.bigip.ltm.monitor.Diameter method), 40
create() (f5.bigip.ltm.monitor.Diameters method), 39
create() (f5.bigip.ltm.monitor.Dns method), 42
create() (f5.bigip.ltm.monitor.Dns_s method), 41
create() (f5.bigip.ltm.monitor.External method), 44
create() (f5.bigip.ltm.monitor.Externals method), 43
create() (f5.bigip.ltm.monitor.Firepass method), 46
create() (f5.bigip.ltm.monitor.Firepass_s method), 45
create() (f5.bigip.ltm.monitor.Ftp method), 48
create() (f5.bigip.ltm.monitor.Ftps method), 47
create() (f5.bigip.ltm.monitor.Gateway_Icmp method), 50
create() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
create() (f5.bigip.ltm.monitor.Http method), 35
create() (f5.bigip.ltm.monitor.HttpS method), 37
create() (f5.bigip.ltm.monitor.Https method), 34
create() (f5.bigip.ltm.monitor.Https_s method), 37
create() (f5.bigip.ltm.monitor.Icmp method), 53
create() (f5.bigip.ltm.monitor.Icmps method), 52
create() (f5.bigip.ltm.monitor.Imap method), 55
create() (f5.bigip.ltm.monitor.Imaps method), 54
create() (f5.bigip.ltm.monitor.Inband method), 57
create() (f5.bigip.ltm.monitor.Inbands method), 56
create() (f5.bigip.ltm.monitor.Ldap method), 59
create() (f5.bigip.ltm.monitor.Ldaps method), 58
create() (f5.bigip.ltm.monitor.Module_Score method), 61
create() (f5.bigip.ltm.monitor.Module_Scores method),

61
create() (f5.bigip.ltm.monitor.Mssql method), 66
create() (f5.bigip.ltm.monitor.Mssqls method), 65
create() (f5.bigip.ltm.monitor.Mysql method), 64
create() (f5.bigip.ltm.monitor.Mysqls method), 63
create() (f5.bigip.ltm.monitor.Nntp method), 68
create() (f5.bigip.ltm.monitor.Nntps method), 67
create() (f5.bigip.ltm.monitor.NONE method), 70
create() (f5.bigip.ltm.monitor.Nones method), 69

217

F5 Python SDK Documentation, Release 0.1.1

create() (f5.bigip.ltm.monitor.Oracle method), 72
create() (f5.bigip.ltm.monitor.Oracles method), 72
create() (f5.bigip.ltm.monitor.Pop3 method), 75
create() (f5.bigip.ltm.monitor.Pop3s method), 74
create() (f5.bigip.ltm.monitor.Postgresql method), 77
create() (f5.bigip.ltm.monitor.Postgresqls method), 76
create() (f5.bigip.ltm.monitor.Radius method), 79
create() (f5.bigip.ltm.monitor.Radius_Accounting

method), 81
create() (f5.bigip.ltm.monitor.Radius_Accountings

method), 80
create() (f5.bigip.ltm.monitor.Radius_s method), 78
create() (f5.bigip.ltm.monitor.Real_Server method), 84
create() (f5.bigip.ltm.monitor.Real_Servers method), 83
create() (f5.bigip.ltm.monitor.Rpc method), 86
create() (f5.bigip.ltm.monitor.Rpcs method), 85
create() (f5.bigip.ltm.monitor.Sasp method), 88
create() (f5.bigip.ltm.monitor.Sasps method), 87
create() (f5.bigip.ltm.monitor.Scripted method), 90
create() (f5.bigip.ltm.monitor.Scripteds method), 89
create() (f5.bigip.ltm.monitor.Sip method), 92
create() (f5.bigip.ltm.monitor.Sips method), 91
create() (f5.bigip.ltm.monitor.Smb method), 94
create() (f5.bigip.ltm.monitor.Smbs method), 94
create() (f5.bigip.ltm.monitor.Smtp method), 97
create() (f5.bigip.ltm.monitor.Smtps method), 96
create() (f5.bigip.ltm.monitor.Snmp_Dca method), 99
create() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

101
create() (f5.bigip.ltm.monitor.Snmp_Dca_Bases method),

100
create() (f5.bigip.ltm.monitor.Snmp_Dcas method), 98
create() (f5.bigip.ltm.monitor.Soap method), 103
create() (f5.bigip.ltm.monitor.Soaps method), 102
create() (f5.bigip.ltm.monitor.Tcp method), 105
create() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
create() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
create() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

110
create() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

109
create() (f5.bigip.ltm.monitor.Tcps method), 105
create() (f5.bigip.ltm.monitor.Udp method), 112
create() (f5.bigip.ltm.monitor.Udps method), 111
create() (f5.bigip.ltm.monitor.Virtual_Location method),

114
create() (f5.bigip.ltm.monitor.Virtual_Locations method),

113
create() (f5.bigip.ltm.monitor.Wap method), 116
create() (f5.bigip.ltm.monitor.Waps method), 116
create() (f5.bigip.ltm.monitor.Wmi method), 119
create() (f5.bigip.ltm.monitor.Wmis method), 118
create() (f5.bigip.ltm.nat.Nat method), 121
create() (f5.bigip.ltm.nat.Nats method), 120

create() (f5.bigip.ltm.node.Node method), 124
create() (f5.bigip.ltm.node.Nodes method), 123
create() (f5.bigip.ltm.policy.Actions method), 130
create() (f5.bigip.ltm.policy.Actions_s method), 129
create() (f5.bigip.ltm.policy.Conditions method), 132
create() (f5.bigip.ltm.policy.Conditions_s method), 132
create() (f5.bigip.ltm.policy.Policy method), 126
create() (f5.bigip.ltm.policy.Policys method), 125
create() (f5.bigip.ltm.policy.Rules method), 128
create() (f5.bigip.ltm.policy.Rules_s method), 127
create() (f5.bigip.ltm.pool.Members method), 138
create() (f5.bigip.ltm.pool.Members_s method), 136
create() (f5.bigip.ltm.pool.Pool method), 135
create() (f5.bigip.ltm.pool.Pools method), 134
create() (f5.bigip.ltm.rule.Rule method), 140
create() (f5.bigip.ltm.rule.Rules method), 139
create() (f5.bigip.ltm.snat.Snat method), 142
create() (f5.bigip.ltm.snat.Snats method), 141
create() (f5.bigip.ltm.virtual.Virtual method), 145
create() (f5.bigip.ltm.virtual.Virtuals method), 144
create() (f5.bigip.mixins.UnnamedResourceMixin

method), 203
create() (f5.bigip.net.arp.Arp method), 148
create() (f5.bigip.net.arp.Arps method), 147
create() (f5.bigip.net.fdb.Fdbs method), 172
create() (f5.bigip.net.fdb.Tunnel method), 172
create() (f5.bigip.net.fdb.Tunnels method), 174
create() (f5.bigip.net.fdb.Vlans method), 175
create() (f5.bigip.net.interface.Interface method), 150
create() (f5.bigip.net.interface.Interfaces method), 149
create() (f5.bigip.net.route.Route method), 152
create() (f5.bigip.net.route.Routes method), 152
create() (f5.bigip.net.route_domain.Route_Domain

method), 155
create() (f5.bigip.net.route_domain.Route_Domains

method), 154
create() (f5.bigip.net.selfip.Selfip method), 157
create() (f5.bigip.net.selfip.Selfips method), 157
create() (f5.bigip.net.tunnels.Gre method), 163
create() (f5.bigip.net.tunnels.Gres method), 162
create() (f5.bigip.net.tunnels.Tunnel method), 161
create() (f5.bigip.net.tunnels.Tunnels method), 160
create() (f5.bigip.net.tunnels.Tunnels_s method), 159
create() (f5.bigip.net.tunnels.Vxlan method), 165
create() (f5.bigip.net.tunnels.Vxlans method), 164
create() (f5.bigip.net.vlan.Interfaces method), 170
create() (f5.bigip.net.vlan.Interfaces_s method), 169
create() (f5.bigip.net.vlan.Vlan method), 168
create() (f5.bigip.net.vlan.Vlans method), 167
create() (f5.bigip.resource.Collection method), 200
create() (f5.bigip.resource.OrganizingCollection

method), 200
create() (f5.bigip.resource.Resource method), 201
create() (f5.bigip.resource.ResourceBase method), 199

218 Index

F5 Python SDK Documentation, Release 0.1.1

create() (f5.bigip.sys.application.Aplscript method), 178
create() (f5.bigip.sys.application.Aplscripts method), 177
create() (f5.bigip.sys.application.Applications method),

176
create() (f5.bigip.sys.application.Customstat method),

180
create() (f5.bigip.sys.application.Customstats method),

179
create() (f5.bigip.sys.application.Service method), 183
create() (f5.bigip.sys.application.Services method), 181
create() (f5.bigip.sys.application.Template method), 184
create() (f5.bigip.sys.application.Templates method), 184
create() (f5.bigip.sys.db.Db method), 187
create() (f5.bigip.sys.db.Dbs method), 186
create() (f5.bigip.sys.failover.Failover method), 188
create() (f5.bigip.sys.folder.Folders method), 189
create() (f5.bigip.sys.global_settings.Global_Settings

method), 191
create() (f5.bigip.sys.ntp.Ntp method), 192
create() (f5.bigip.sys.ntp.Restrict method), 194
create() (f5.bigip.sys.ntp.Restricts method), 193
create() (f5.bigip.sys.performance.All_Stats method),

196
create() (f5.bigip.sys.performance.Performance method),

195
crit() (f5.common.logger.Log static method), 205
CurlyBraceMismatchException, 204
Customstat (class in f5.bigip.sys.application), 180
Customstats (class in f5.bigip.sys.application), 179

D
Db (class in f5.bigip.sys.db), 187
Dbs (class in f5.bigip.sys.db), 186
debug() (f5.common.logger.Log static method), 205
delete() (f5.bigip.BigIP method), 21
delete() (f5.bigip.cm.Cm method), 22
delete() (f5.bigip.cm.device.Device method), 24
delete() (f5.bigip.cm.device.Devices method), 23
delete() (f5.bigip.cm.device_group.Device_Group

method), 26
delete() (f5.bigip.cm.device_group.Device_Groups

method), 25
delete() (f5.bigip.cm.device_group.Devices method), 28
delete() (f5.bigip.cm.device_group.Devices_s method),

27
delete() (f5.bigip.cm.traffic_group.Traffic_Group

method), 30
delete() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
delete() (f5.bigip.ltm.Ltm method), 32
delete() (f5.bigip.ltm.monitor.Diameter method), 40
delete() (f5.bigip.ltm.monitor.Diameters method), 39
delete() (f5.bigip.ltm.monitor.Dns method), 42
delete() (f5.bigip.ltm.monitor.Dns_s method), 41

delete() (f5.bigip.ltm.monitor.External method), 44
delete() (f5.bigip.ltm.monitor.Externals method), 43
delete() (f5.bigip.ltm.monitor.Firepass method), 46
delete() (f5.bigip.ltm.monitor.Firepass_s method), 45
delete() (f5.bigip.ltm.monitor.Ftp method), 48
delete() (f5.bigip.ltm.monitor.Ftps method), 48
delete() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
delete() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
delete() (f5.bigip.ltm.monitor.Http method), 35
delete() (f5.bigip.ltm.monitor.HttpS method), 38
delete() (f5.bigip.ltm.monitor.Https method), 35
delete() (f5.bigip.ltm.monitor.Https_s method), 37
delete() (f5.bigip.ltm.monitor.Icmp method), 53
delete() (f5.bigip.ltm.monitor.Icmps method), 52
delete() (f5.bigip.ltm.monitor.Imap method), 55
delete() (f5.bigip.ltm.monitor.Imaps method), 54
delete() (f5.bigip.ltm.monitor.Inband method), 57
delete() (f5.bigip.ltm.monitor.Inbands method), 56
delete() (f5.bigip.ltm.monitor.Ldap method), 59
delete() (f5.bigip.ltm.monitor.Ldaps method), 59
delete() (f5.bigip.ltm.monitor.Module_Score method), 62
delete() (f5.bigip.ltm.monitor.Module_Scores method),

61
delete() (f5.bigip.ltm.monitor.Mssql method), 66
delete() (f5.bigip.ltm.monitor.Mssqls method), 65
delete() (f5.bigip.ltm.monitor.Mysql method), 64
delete() (f5.bigip.ltm.monitor.Mysqls method), 63
delete() (f5.bigip.ltm.monitor.Nntp method), 68
delete() (f5.bigip.ltm.monitor.Nntps method), 67
delete() (f5.bigip.ltm.monitor.NONE method), 70
delete() (f5.bigip.ltm.monitor.Nones method), 70
delete() (f5.bigip.ltm.monitor.Oracle method), 73
delete() (f5.bigip.ltm.monitor.Oracles method), 72
delete() (f5.bigip.ltm.monitor.Pop3 method), 75
delete() (f5.bigip.ltm.monitor.Pop3s method), 74
delete() (f5.bigip.ltm.monitor.Postgresql method), 77
delete() (f5.bigip.ltm.monitor.Postgresqls method), 76
delete() (f5.bigip.ltm.monitor.Radius method), 79
delete() (f5.bigip.ltm.monitor.Radius_Accounting

method), 81
delete() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
delete() (f5.bigip.ltm.monitor.Radius_s method), 78
delete() (f5.bigip.ltm.monitor.Real_Server method), 84
delete() (f5.bigip.ltm.monitor.Real_Servers method), 83
delete() (f5.bigip.ltm.monitor.Rpc method), 86
delete() (f5.bigip.ltm.monitor.Rpcs method), 85
delete() (f5.bigip.ltm.monitor.Sasp method), 88
delete() (f5.bigip.ltm.monitor.Sasps method), 87
delete() (f5.bigip.ltm.monitor.Scripted method), 90
delete() (f5.bigip.ltm.monitor.Scripteds method), 89
delete() (f5.bigip.ltm.monitor.Sip method), 92
delete() (f5.bigip.ltm.monitor.Sips method), 92

Index 219

F5 Python SDK Documentation, Release 0.1.1

delete() (f5.bigip.ltm.monitor.Smb method), 95
delete() (f5.bigip.ltm.monitor.Smbs method), 94
delete() (f5.bigip.ltm.monitor.Smtp method), 97
delete() (f5.bigip.ltm.monitor.Smtps method), 96
delete() (f5.bigip.ltm.monitor.Snmp_Dca method), 99
delete() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

101
delete() (f5.bigip.ltm.monitor.Snmp_Dca_Bases method),

100
delete() (f5.bigip.ltm.monitor.Snmp_Dcas method), 98
delete() (f5.bigip.ltm.monitor.Soap method), 103
delete() (f5.bigip.ltm.monitor.Soaps method), 103
delete() (f5.bigip.ltm.monitor.Tcp method), 106
delete() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
delete() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
delete() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

110
delete() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

109
delete() (f5.bigip.ltm.monitor.Tcps method), 105
delete() (f5.bigip.ltm.monitor.Udp method), 112
delete() (f5.bigip.ltm.monitor.Udps method), 111
delete() (f5.bigip.ltm.monitor.Virtual_Location method),

114
delete() (f5.bigip.ltm.monitor.Virtual_Locations method),

114
delete() (f5.bigip.ltm.monitor.Wap method), 117
delete() (f5.bigip.ltm.monitor.Waps method), 116
delete() (f5.bigip.ltm.monitor.Wmi method), 119
delete() (f5.bigip.ltm.monitor.Wmis method), 118
delete() (f5.bigip.ltm.nat.Nat method), 121
delete() (f5.bigip.ltm.nat.Nats method), 120
delete() (f5.bigip.ltm.node.Node method), 124
delete() (f5.bigip.ltm.node.Nodes method), 123
delete() (f5.bigip.ltm.policy.Actions method), 130
delete() (f5.bigip.ltm.policy.Actions_s method), 130
delete() (f5.bigip.ltm.policy.Conditions method), 133
delete() (f5.bigip.ltm.policy.Conditions_s method), 132
delete() (f5.bigip.ltm.policy.Policy method), 126
delete() (f5.bigip.ltm.policy.Policys method), 125
delete() (f5.bigip.ltm.policy.Rules method), 128
delete() (f5.bigip.ltm.policy.Rules_s method), 127
delete() (f5.bigip.ltm.pool.Members method), 138
delete() (f5.bigip.ltm.pool.Members_s method), 137
delete() (f5.bigip.ltm.pool.Pool method), 135
delete() (f5.bigip.ltm.pool.Pools method), 134
delete() (f5.bigip.ltm.rule.Rule method), 140
delete() (f5.bigip.ltm.rule.Rules method), 139
delete() (f5.bigip.ltm.snat.Snat method), 142
delete() (f5.bigip.ltm.snat.Snats method), 141
delete() (f5.bigip.ltm.virtual.Virtual method), 145
delete() (f5.bigip.ltm.virtual.Virtuals method), 144
delete() (f5.bigip.mixins.UnnamedResourceMixin

method), 203

delete() (f5.bigip.net.arp.Arp method), 148
delete() (f5.bigip.net.arp.Arps method), 147
delete() (f5.bigip.net.fdb.Fdbs method), 172
delete() (f5.bigip.net.fdb.Tunnel method), 173
delete() (f5.bigip.net.fdb.Tunnels method), 174
delete() (f5.bigip.net.fdb.Vlans method), 175
delete() (f5.bigip.net.interface.Interface method), 150
delete() (f5.bigip.net.interface.Interfaces method), 149
delete() (f5.bigip.net.route.Route method), 153
delete() (f5.bigip.net.route.Routes method), 152
delete() (f5.bigip.net.route_domain.Route_Domain

method), 155
delete() (f5.bigip.net.route_domain.Route_Domains

method), 154
delete() (f5.bigip.net.selfip.Selfip method), 158
delete() (f5.bigip.net.selfip.Selfips method), 157
delete() (f5.bigip.net.tunnels.Gre method), 163
delete() (f5.bigip.net.tunnels.Gres method), 162
delete() (f5.bigip.net.tunnels.Tunnel method), 161
delete() (f5.bigip.net.tunnels.Tunnels method), 160
delete() (f5.bigip.net.tunnels.Tunnels_s method), 159
delete() (f5.bigip.net.tunnels.Vxlan method), 165
delete() (f5.bigip.net.tunnels.Vxlans method), 165
delete() (f5.bigip.net.vlan.Interfaces method), 170
delete() (f5.bigip.net.vlan.Interfaces_s method), 169
delete() (f5.bigip.net.vlan.Vlan method), 168
delete() (f5.bigip.net.vlan.Vlans method), 167
delete() (f5.bigip.resource.Collection method), 201
delete() (f5.bigip.resource.OrganizingCollection

method), 200
delete() (f5.bigip.resource.Resource method), 202
delete() (f5.bigip.resource.ResourceBase method), 199
delete() (f5.bigip.sys.application.Aplscript method), 178
delete() (f5.bigip.sys.application.Aplscripts method), 177
delete() (f5.bigip.sys.application.Applications method),

176
delete() (f5.bigip.sys.application.Customstat method),

180
delete() (f5.bigip.sys.application.Customstats method),

179
delete() (f5.bigip.sys.application.Service method), 183
delete() (f5.bigip.sys.application.Services method), 182
delete() (f5.bigip.sys.application.Template method), 184
delete() (f5.bigip.sys.application.Templates method), 184
delete() (f5.bigip.sys.db.Db method), 187
delete() (f5.bigip.sys.db.Dbs method), 186
delete() (f5.bigip.sys.failover.Failover method), 189
delete() (f5.bigip.sys.folder.Folders method), 190
delete() (f5.bigip.sys.global_settings.Global_Settings

method), 191
delete() (f5.bigip.sys.ntp.Ntp method), 192
delete() (f5.bigip.sys.ntp.Restrict method), 194
delete() (f5.bigip.sys.ntp.Restricts method), 193

220 Index

F5 Python SDK Documentation, Release 0.1.1

delete() (f5.bigip.sys.performance.All_Stats method),
196

delete() (f5.bigip.sys.performance.Performance method),
195

Device (class in f5.bigip.cm.device), 23
Device_Group (class in f5.bigip.cm.device_group), 26
Device_Groups (class in f5.bigip.cm.device_group), 25
DeviceProvidesIncompatibleKey, 198
Devices (class in f5.bigip.cm.device), 23
Devices (class in f5.bigip.cm.device_group), 28
Devices_s (class in f5.bigip.cm.device_group), 27
Diameter (class in f5.bigip.ltm.monitor), 39
Diameters (class in f5.bigip.ltm.monitor), 39
Dns (class in f5.bigip.ltm.monitor), 42
Dns_s (class in f5.bigip.ltm.monitor), 41

E
EmptyTemplateException, 204
error() (f5.common.logger.Log static method), 205
ExclusiveAttributesMixin (class in f5.bigip.mixins), 203
exists() (f5.bigip.cm.device.Device method), 24
exists() (f5.bigip.cm.device_group.Device_Group

method), 26
exists() (f5.bigip.cm.device_group.Devices method), 28
exists() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
exists() (f5.bigip.ltm.monitor.Diameter method), 40
exists() (f5.bigip.ltm.monitor.Dns method), 42
exists() (f5.bigip.ltm.monitor.External method), 44
exists() (f5.bigip.ltm.monitor.Firepass method), 46
exists() (f5.bigip.ltm.monitor.Ftp method), 49
exists() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
exists() (f5.bigip.ltm.monitor.Http method), 36
exists() (f5.bigip.ltm.monitor.HttpS method), 38
exists() (f5.bigip.ltm.monitor.Icmp method), 53
exists() (f5.bigip.ltm.monitor.Imap method), 55
exists() (f5.bigip.ltm.monitor.Inband method), 57
exists() (f5.bigip.ltm.monitor.Ldap method), 60
exists() (f5.bigip.ltm.monitor.Module_Score method), 62
exists() (f5.bigip.ltm.monitor.Mssql method), 66
exists() (f5.bigip.ltm.monitor.Mysql method), 64
exists() (f5.bigip.ltm.monitor.Nntp method), 68
exists() (f5.bigip.ltm.monitor.NONE method), 71
exists() (f5.bigip.ltm.monitor.Oracle method), 73
exists() (f5.bigip.ltm.monitor.Pop3 method), 75
exists() (f5.bigip.ltm.monitor.Postgresql method), 77
exists() (f5.bigip.ltm.monitor.Radius method), 79
exists() (f5.bigip.ltm.monitor.Radius_Accounting

method), 82
exists() (f5.bigip.ltm.monitor.Real_Server method), 84
exists() (f5.bigip.ltm.monitor.Rpc method), 86
exists() (f5.bigip.ltm.monitor.Sasp method), 88
exists() (f5.bigip.ltm.monitor.Scripted method), 90
exists() (f5.bigip.ltm.monitor.Sip method), 93

exists() (f5.bigip.ltm.monitor.Smb method), 95
exists() (f5.bigip.ltm.monitor.Smtp method), 97
exists() (f5.bigip.ltm.monitor.Snmp_Dca method), 99
exists() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

101
exists() (f5.bigip.ltm.monitor.Soap method), 104
exists() (f5.bigip.ltm.monitor.Tcp method), 106
exists() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
exists() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

110
exists() (f5.bigip.ltm.monitor.Udp method), 112
exists() (f5.bigip.ltm.monitor.Virtual_Location method),

115
exists() (f5.bigip.ltm.monitor.Wap method), 117
exists() (f5.bigip.ltm.monitor.Wmi method), 119
exists() (f5.bigip.ltm.nat.Nat method), 122
exists() (f5.bigip.ltm.node.Node method), 124
exists() (f5.bigip.ltm.policy.Actions method), 131
exists() (f5.bigip.ltm.policy.Conditions method), 133
exists() (f5.bigip.ltm.policy.Policy method), 126
exists() (f5.bigip.ltm.policy.Rules method), 128
exists() (f5.bigip.ltm.pool.Members method), 138
exists() (f5.bigip.ltm.pool.Pool method), 135
exists() (f5.bigip.ltm.rule.Rule method), 140
exists() (f5.bigip.ltm.snat.Snat method), 143
exists() (f5.bigip.ltm.virtual.Virtual method), 145
exists() (f5.bigip.net.arp.Arp method), 148
exists() (f5.bigip.net.fdb.Tunnel method), 173
exists() (f5.bigip.net.interface.Interface method), 150
exists() (f5.bigip.net.route.Route method), 153
exists() (f5.bigip.net.route_domain.Route_Domain

method), 155
exists() (f5.bigip.net.selfip.Selfip method), 158
exists() (f5.bigip.net.tunnels.Gre method), 163
exists() (f5.bigip.net.tunnels.Tunnel method), 161
exists() (f5.bigip.net.tunnels.Vxlan method), 166
exists() (f5.bigip.net.vlan.Interfaces method), 170
exists() (f5.bigip.net.vlan.Vlan method), 168
exists() (f5.bigip.resource.Resource method), 202
exists() (f5.bigip.sys.application.Aplscript method), 178
exists() (f5.bigip.sys.application.Customstat method),

180
exists() (f5.bigip.sys.application.Service method), 182
exists() (f5.bigip.sys.application.Template method), 185
exists() (f5.bigip.sys.db.Db method), 187
exists() (f5.bigip.sys.failover.Failover method), 189
exists() (f5.bigip.sys.global_settings.Global_Settings

method), 191
exists() (f5.bigip.sys.ntp.Ntp method), 192
exists() (f5.bigip.sys.ntp.Restrict method), 194
exists() (f5.bigip.sys.performance.All_Stats method), 196
External (class in f5.bigip.ltm.monitor), 44
Externals (class in f5.bigip.ltm.monitor), 43

Index 221

F5 Python SDK Documentation, Release 0.1.1

F
f5 (module), 205
f5.bigip (module), 20
f5.bigip.cm (module), 22
f5.bigip.cm.device (module), 22
f5.bigip.cm.device_group (module), 25
f5.bigip.cm.traffic_group (module), 29
f5.bigip.ltm (module), 32
f5.bigip.ltm.monitor (module), 33
f5.bigip.ltm.nat (module), 120
f5.bigip.ltm.node (module), 122
f5.bigip.ltm.policy (module), 125
f5.bigip.ltm.pool (module), 134
f5.bigip.ltm.rule (module), 139
f5.bigip.ltm.snat (module), 141
f5.bigip.ltm.virtual (module), 144
f5.bigip.mixins (module), 203
f5.bigip.net (module), 146
f5.bigip.net.arp (module), 147
f5.bigip.net.fdb (module), 171
f5.bigip.net.interface (module), 149
f5.bigip.net.route (module), 151
f5.bigip.net.route_domain (module), 154
f5.bigip.net.selfip (module), 156
f5.bigip.net.tunnels (module), 159
f5.bigip.net.vlan (module), 167
f5.bigip.resource (module), 197
f5.bigip.sys (module), 175
f5.bigip.sys.application (module), 176
f5.bigip.sys.db (module), 186
f5.bigip.sys.failover (module), 188
f5.bigip.sys.folder (module), 189
f5.bigip.sys.global_settings (module), 190
f5.bigip.sys.ntp (module), 192
f5.bigip.sys.performance (module), 195
f5.common (module), 205
f5.common.constants (module), 204
f5.common.iapp_parser (module), 204
f5.common.logger (module), 205
f5.sdk_exception (module), 205
F5SDKError, 205
Failover (class in f5.bigip.sys.failover), 188
Fdbs (class in f5.bigip.net.fdb), 172
Firepass (class in f5.bigip.ltm.monitor), 46
Firepass_s (class in f5.bigip.ltm.monitor), 45
Folders (class in f5.bigip.sys.folder), 189
Ftp (class in f5.bigip.ltm.monitor), 48
Ftps (class in f5.bigip.ltm.monitor), 47

G
Gateway_Icmp (class in f5.bigip.ltm.monitor), 50
Gateway_Icmps (class in f5.bigip.ltm.monitor), 50
GenerationMismatch, 198
get_collection() (f5.bigip.BigIP method), 21

get_collection() (f5.bigip.cm.Cm method), 22
get_collection() (f5.bigip.cm.device.Devices method), 23
get_collection() (f5.bigip.cm.device_group.Device_Groups

method), 25
get_collection() (f5.bigip.cm.device_group.Devices_s

method), 27
get_collection() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
get_collection() (f5.bigip.ltm.Ltm method), 32
get_collection() (f5.bigip.ltm.monitor.Diameters

method), 39
get_collection() (f5.bigip.ltm.monitor.Dns_s method), 41
get_collection() (f5.bigip.ltm.monitor.Externals method),

43
get_collection() (f5.bigip.ltm.monitor.Firepass_s

method), 45
get_collection() (f5.bigip.ltm.monitor.Ftps method), 48
get_collection() (f5.bigip.ltm.monitor.Gateway_Icmps

method), 50
get_collection() (f5.bigip.ltm.monitor.Https method), 35
get_collection() (f5.bigip.ltm.monitor.Https_s method),

37
get_collection() (f5.bigip.ltm.monitor.Icmps method), 52
get_collection() (f5.bigip.ltm.monitor.Imaps method), 54
get_collection() (f5.bigip.ltm.monitor.Inbands method),

56
get_collection() (f5.bigip.ltm.monitor.Ldaps method), 59
get_collection() (f5.bigip.ltm.monitor.Module_Scores

method), 61
get_collection() (f5.bigip.ltm.monitor.Mssqls method),

65
get_collection() (f5.bigip.ltm.monitor.Mysqls method),

63
get_collection() (f5.bigip.ltm.monitor.Nntps method), 67
get_collection() (f5.bigip.ltm.monitor.Nones method), 70
get_collection() (f5.bigip.ltm.monitor.Oracles method),

72
get_collection() (f5.bigip.ltm.monitor.Pop3s method), 74
get_collection() (f5.bigip.ltm.monitor.Postgresqls

method), 76
get_collection() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81
get_collection() (f5.bigip.ltm.monitor.Radius_s method),

78
get_collection() (f5.bigip.ltm.monitor.Real_Servers

method), 83
get_collection() (f5.bigip.ltm.monitor.Rpcs method), 85
get_collection() (f5.bigip.ltm.monitor.Sasps method), 87
get_collection() (f5.bigip.ltm.monitor.Scripteds method),

89
get_collection() (f5.bigip.ltm.monitor.Sips method), 92
get_collection() (f5.bigip.ltm.monitor.Smbs method), 94
get_collection() (f5.bigip.ltm.monitor.Smtps method), 96
get_collection() (f5.bigip.ltm.monitor.Snmp_Dca_Bases

222 Index

F5 Python SDK Documentation, Release 0.1.1

method), 100
get_collection() (f5.bigip.ltm.monitor.Snmp_Dcas

method), 98
get_collection() (f5.bigip.ltm.monitor.Soaps method),

103
get_collection() (f5.bigip.ltm.monitor.Tcp_Echos

method), 107
get_collection() (f5.bigip.ltm.monitor.Tcp_Half_Opens

method), 109
get_collection() (f5.bigip.ltm.monitor.Tcps method), 105
get_collection() (f5.bigip.ltm.monitor.Udps method), 111
get_collection() (f5.bigip.ltm.monitor.Virtual_Locations

method), 114
get_collection() (f5.bigip.ltm.monitor.Waps method), 116
get_collection() (f5.bigip.ltm.monitor.Wmis method),

118
get_collection() (f5.bigip.ltm.nat.Nats method), 120
get_collection() (f5.bigip.ltm.node.Nodes method), 123
get_collection() (f5.bigip.ltm.policy.Actions_s method),

130
get_collection() (f5.bigip.ltm.policy.Conditions_s

method), 132
get_collection() (f5.bigip.ltm.policy.Policys method), 125
get_collection() (f5.bigip.ltm.policy.Rules_s method),

127
get_collection() (f5.bigip.ltm.pool.Members_s method),

137
get_collection() (f5.bigip.ltm.pool.Pools method), 134
get_collection() (f5.bigip.ltm.rule.Rules method), 139
get_collection() (f5.bigip.ltm.snat.Snats method), 141
get_collection() (f5.bigip.ltm.virtual.Virtuals method),

144
get_collection() (f5.bigip.net.arp.Arps method), 147
get_collection() (f5.bigip.net.fdb.Fdbs method), 172
get_collection() (f5.bigip.net.fdb.Tunnels method), 174
get_collection() (f5.bigip.net.fdb.Vlans method), 175
get_collection() (f5.bigip.net.interface.Interfaces

method), 149
get_collection() (f5.bigip.net.route.Routes method), 152
get_collection() (f5.bigip.net.route_domain.Route_Domains

method), 154
get_collection() (f5.bigip.net.selfip.Selfips method), 157
get_collection() (f5.bigip.net.tunnels.Gres method), 162
get_collection() (f5.bigip.net.tunnels.Tunnels method),

160
get_collection() (f5.bigip.net.tunnels.Tunnels_s method),

159
get_collection() (f5.bigip.net.tunnels.Vxlans method),

165
get_collection() (f5.bigip.net.vlan.Interfaces_s method),

169
get_collection() (f5.bigip.net.vlan.Vlans method), 167
get_collection() (f5.bigip.resource.Collection method),

200

get_collection() (f5.bigip.resource.OrganizingCollection
method), 199

get_collection() (f5.bigip.sys.application.Aplscripts
method), 177

get_collection() (f5.bigip.sys.application.Applications
method), 176

get_collection() (f5.bigip.sys.application.Customstats
method), 179

get_collection() (f5.bigip.sys.application.Services
method), 182

get_collection() (f5.bigip.sys.application.Templates
method), 184

get_collection() (f5.bigip.sys.db.Dbs method), 186
get_collection() (f5.bigip.sys.folder.Folders method), 190
get_collection() (f5.bigip.sys.ntp.Restricts method), 193
get_collection() (f5.bigip.sys.performance.Performance

method), 195
Global_Settings (class in f5.bigip.sys.global_settings),

190
Gre (class in f5.bigip.net.tunnels), 163
Gres (class in f5.bigip.net.tunnels), 162

H
Http (class in f5.bigip.ltm.monitor), 35
HttpS (class in f5.bigip.ltm.monitor), 37
Https (class in f5.bigip.ltm.monitor), 34
Https_s (class in f5.bigip.ltm.monitor), 37

I
IappParser (class in f5.common.iapp_parser), 204
Icmp (class in f5.bigip.ltm.monitor), 53
Icmps (class in f5.bigip.ltm.monitor), 52
Imap (class in f5.bigip.ltm.monitor), 55
Imaps (class in f5.bigip.ltm.monitor), 54
Inband (class in f5.bigip.ltm.monitor), 57
Inbands (class in f5.bigip.ltm.monitor), 56
info() (f5.common.logger.Log static method), 205
Interface (class in f5.bigip.net.interface), 150
Interfaces (class in f5.bigip.net.interface), 149
Interfaces (class in f5.bigip.net.vlan), 170
Interfaces_s (class in f5.bigip.net.vlan), 169
InvalidForceType, 198
InvalidResource, 198

K
KindTypeMismatch, 198

L
LazyAttributeMixin (class in f5.bigip.mixins), 203
LazyAttributesRequired, 203
Ldap (class in f5.bigip.ltm.monitor), 59
Ldaps (class in f5.bigip.ltm.monitor), 58
load() (f5.bigip.cm.device.Device method), 24

Index 223

F5 Python SDK Documentation, Release 0.1.1

load() (f5.bigip.cm.device_group.Device_Group
method), 26

load() (f5.bigip.cm.device_group.Devices method), 29
load() (f5.bigip.cm.traffic_group.Traffic_Group method),

31
load() (f5.bigip.ltm.monitor.Diameter method), 40
load() (f5.bigip.ltm.monitor.Dns method), 42
load() (f5.bigip.ltm.monitor.External method), 45
load() (f5.bigip.ltm.monitor.Firepass method), 47
load() (f5.bigip.ltm.monitor.Ftp method), 49
load() (f5.bigip.ltm.monitor.Gateway_Icmp method), 51
load() (f5.bigip.ltm.monitor.Http method), 36
load() (f5.bigip.ltm.monitor.HttpS method), 38
load() (f5.bigip.ltm.monitor.Icmp method), 53
load() (f5.bigip.ltm.monitor.Imap method), 56
load() (f5.bigip.ltm.monitor.Inband method), 58
load() (f5.bigip.ltm.monitor.Ldap method), 60
load() (f5.bigip.ltm.monitor.Module_Score method), 62
load() (f5.bigip.ltm.monitor.Mssql method), 67
load() (f5.bigip.ltm.monitor.Mysql method), 64
load() (f5.bigip.ltm.monitor.Nntp method), 69
load() (f5.bigip.ltm.monitor.NONE method), 71
load() (f5.bigip.ltm.monitor.Oracle method), 73
load() (f5.bigip.ltm.monitor.Pop3 method), 75
load() (f5.bigip.ltm.monitor.Postgresql method), 78
load() (f5.bigip.ltm.monitor.Radius method), 80
load() (f5.bigip.ltm.monitor.Radius_Accounting method),

82
load() (f5.bigip.ltm.monitor.Real_Server method), 84
load() (f5.bigip.ltm.monitor.Rpc method), 86
load() (f5.bigip.ltm.monitor.Sasp method), 89
load() (f5.bigip.ltm.monitor.Scripted method), 91
load() (f5.bigip.ltm.monitor.Sip method), 93
load() (f5.bigip.ltm.monitor.Smb method), 95
load() (f5.bigip.ltm.monitor.Smtp method), 97
load() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
load() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102
load() (f5.bigip.ltm.monitor.Soap method), 104
load() (f5.bigip.ltm.monitor.Tcp method), 106
load() (f5.bigip.ltm.monitor.Tcp_Echo method), 108
load() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
load() (f5.bigip.ltm.monitor.Udp method), 113
load() (f5.bigip.ltm.monitor.Virtual_Location method),

115
load() (f5.bigip.ltm.monitor.Wap method), 117
load() (f5.bigip.ltm.monitor.Wmi method), 120
load() (f5.bigip.ltm.nat.Nat method), 122
load() (f5.bigip.ltm.node.Node method), 124
load() (f5.bigip.ltm.policy.Actions method), 131
load() (f5.bigip.ltm.policy.Conditions method), 133
load() (f5.bigip.ltm.policy.Policy method), 127
load() (f5.bigip.ltm.policy.Rules method), 129

load() (f5.bigip.ltm.pool.Members method), 138
load() (f5.bigip.ltm.pool.Pool method), 136
load() (f5.bigip.ltm.rule.Rule method), 140
load() (f5.bigip.ltm.snat.Snat method), 143
load() (f5.bigip.ltm.virtual.Virtual method), 145
load() (f5.bigip.net.arp.Arp method), 148
load() (f5.bigip.net.fdb.Tunnel method), 173
load() (f5.bigip.net.interface.Interface method), 151
load() (f5.bigip.net.route.Route method), 153
load() (f5.bigip.net.route_domain.Route_Domain

method), 155
load() (f5.bigip.net.selfip.Selfip method), 158
load() (f5.bigip.net.tunnels.Gre method), 164
load() (f5.bigip.net.tunnels.Tunnel method), 161
load() (f5.bigip.net.tunnels.Vxlan method), 166
load() (f5.bigip.net.vlan.Interfaces method), 171
load() (f5.bigip.net.vlan.Vlan method), 168
load() (f5.bigip.resource.Resource method), 202
load() (f5.bigip.sys.application.Aplscript method), 178
load() (f5.bigip.sys.application.Customstat method), 181
load() (f5.bigip.sys.application.Service method), 183
load() (f5.bigip.sys.application.Template method), 185
load() (f5.bigip.sys.db.Db method), 187
load() (f5.bigip.sys.ntp.Restrict method), 194
Log (class in f5.common.logger), 205
Ltm (class in f5.bigip.ltm), 32

M
MalformedTCLListException, 204
Members (class in f5.bigip.ltm.pool), 137
Members_s (class in f5.bigip.ltm.pool), 136
message (f5.common.iapp_parser.CurlyBraceMismatchException

attribute), 204
message (f5.common.iapp_parser.EmptyTemplateException

attribute), 204
message (f5.common.iapp_parser.MalformedTCLListException

attribute), 205
message (f5.common.iapp_parser.NonextantSectionException

attribute), 204
message (f5.common.iapp_parser.NonextantTemplateNameException

attribute), 204
MissingRequiredCreationParameter, 198
MissingRequiredReadParameter, 198
Module_Score (class in f5.bigip.ltm.monitor), 61
Module_Scores (class in f5.bigip.ltm.monitor), 61
Mssql (class in f5.bigip.ltm.monitor), 66
Mssqls (class in f5.bigip.ltm.monitor), 65
Mysql (class in f5.bigip.ltm.monitor), 64
Mysqls (class in f5.bigip.ltm.monitor), 63

N
Nat (class in f5.bigip.ltm.nat), 121
Nats (class in f5.bigip.ltm.nat), 120
Nntp (class in f5.bigip.ltm.monitor), 68

224 Index

F5 Python SDK Documentation, Release 0.1.1

Nntps (class in f5.bigip.ltm.monitor), 67
Node (class in f5.bigip.ltm.node), 123
Nodes (class in f5.bigip.ltm.node), 122
NONE (class in f5.bigip.ltm.monitor), 70
Nones (class in f5.bigip.ltm.monitor), 69
NonextantSectionException, 204
NonextantTemplateNameException, 204
Ntp (class in f5.bigip.sys.ntp), 192

O
Oracle (class in f5.bigip.ltm.monitor), 72
Oracles (class in f5.bigip.ltm.monitor), 72
OrganizingCollection (class in f5.bigip.resource), 199

P
parse_template() (f5.common.iapp_parser.IappParser

method), 204
Performance (class in f5.bigip.sys.performance), 195
Policy (class in f5.bigip.ltm.policy), 126
Policys (class in f5.bigip.ltm.policy), 125
Pool (class in f5.bigip.ltm.pool), 135
Pools (class in f5.bigip.ltm.pool), 134
Pop3 (class in f5.bigip.ltm.monitor), 75
Pop3s (class in f5.bigip.ltm.monitor), 74
Postgresql (class in f5.bigip.ltm.monitor), 77
Postgresqls (class in f5.bigip.ltm.monitor), 76

R
Radius (class in f5.bigip.ltm.monitor), 79
Radius_Accounting (class in f5.bigip.ltm.monitor), 81
Radius_Accountings (class in f5.bigip.ltm.monitor), 80
Radius_s (class in f5.bigip.ltm.monitor), 78
raw (f5.bigip.BigIP attribute), 21
raw (f5.bigip.cm.Cm attribute), 22
raw (f5.bigip.cm.device.Device attribute), 24
raw (f5.bigip.cm.device.Devices attribute), 23
raw (f5.bigip.cm.device_group.Device_Group attribute),

27
raw (f5.bigip.cm.device_group.Device_Groups attribute),

25
raw (f5.bigip.cm.device_group.Devices attribute), 29
raw (f5.bigip.cm.device_group.Devices_s attribute), 28
raw (f5.bigip.cm.traffic_group.Traffic_Group attribute),

31
raw (f5.bigip.cm.traffic_group.Traffic_Groups attribute),

30
raw (f5.bigip.ltm.Ltm attribute), 32
raw (f5.bigip.ltm.monitor.Diameter attribute), 40
raw (f5.bigip.ltm.monitor.Diameters attribute), 39
raw (f5.bigip.ltm.monitor.Dns attribute), 43
raw (f5.bigip.ltm.monitor.Dns_s attribute), 41
raw (f5.bigip.ltm.monitor.External attribute), 45
raw (f5.bigip.ltm.monitor.Externals attribute), 44
raw (f5.bigip.ltm.monitor.Firepass attribute), 47

raw (f5.bigip.ltm.monitor.Firepass_s attribute), 46
raw (f5.bigip.ltm.monitor.Ftp attribute), 49
raw (f5.bigip.ltm.monitor.Ftps attribute), 48
raw (f5.bigip.ltm.monitor.Gateway_Icmp attribute), 51
raw (f5.bigip.ltm.monitor.Gateway_Icmps attribute), 50
raw (f5.bigip.ltm.monitor.Http attribute), 36
raw (f5.bigip.ltm.monitor.HttpS attribute), 38
raw (f5.bigip.ltm.monitor.Https attribute), 35
raw (f5.bigip.ltm.monitor.Https_s attribute), 37
raw (f5.bigip.ltm.monitor.Icmp attribute), 54
raw (f5.bigip.ltm.monitor.Icmps attribute), 52
raw (f5.bigip.ltm.monitor.Imap attribute), 56
raw (f5.bigip.ltm.monitor.Imaps attribute), 54
raw (f5.bigip.ltm.monitor.Inband attribute), 58
raw (f5.bigip.ltm.monitor.Inbands attribute), 57
raw (f5.bigip.ltm.monitor.Ldap attribute), 60
raw (f5.bigip.ltm.monitor.Ldaps attribute), 59
raw (f5.bigip.ltm.monitor.Module_Score attribute), 62
raw (f5.bigip.ltm.monitor.Module_Scores attribute), 61
raw (f5.bigip.ltm.monitor.Mssql attribute), 67
raw (f5.bigip.ltm.monitor.Mssqls attribute), 65
raw (f5.bigip.ltm.monitor.Mysql attribute), 65
raw (f5.bigip.ltm.monitor.Mysqls attribute), 63
raw (f5.bigip.ltm.monitor.Nntp attribute), 69
raw (f5.bigip.ltm.monitor.Nntps attribute), 68
raw (f5.bigip.ltm.monitor.NONE attribute), 71
raw (f5.bigip.ltm.monitor.Nones attribute), 70
raw (f5.bigip.ltm.monitor.Oracle attribute), 73
raw (f5.bigip.ltm.monitor.Oracles attribute), 72
raw (f5.bigip.ltm.monitor.Pop3 attribute), 76
raw (f5.bigip.ltm.monitor.Pop3s attribute), 74
raw (f5.bigip.ltm.monitor.Postgresql attribute), 78
raw (f5.bigip.ltm.monitor.Postgresqls attribute), 76
raw (f5.bigip.ltm.monitor.Radius attribute), 80
raw (f5.bigip.ltm.monitor.Radius_Accounting attribute),

82
raw (f5.bigip.ltm.monitor.Radius_Accountings attribute),

81
raw (f5.bigip.ltm.monitor.Radius_s attribute), 79
raw (f5.bigip.ltm.monitor.Real_Server attribute), 85
raw (f5.bigip.ltm.monitor.Real_Servers attribute), 83
raw (f5.bigip.ltm.monitor.Rpc attribute), 87
raw (f5.bigip.ltm.monitor.Rpcs attribute), 85
raw (f5.bigip.ltm.monitor.Sasp attribute), 89
raw (f5.bigip.ltm.monitor.Sasps attribute), 87
raw (f5.bigip.ltm.monitor.Scripted attribute), 91
raw (f5.bigip.ltm.monitor.Scripteds attribute), 90
raw (f5.bigip.ltm.monitor.Sip attribute), 93
raw (f5.bigip.ltm.monitor.Sips attribute), 92
raw (f5.bigip.ltm.monitor.Smb attribute), 95
raw (f5.bigip.ltm.monitor.Smbs attribute), 94
raw (f5.bigip.ltm.monitor.Smtp attribute), 98
raw (f5.bigip.ltm.monitor.Smtps attribute), 96
raw (f5.bigip.ltm.monitor.Snmp_Dca attribute), 100

Index 225

F5 Python SDK Documentation, Release 0.1.1

raw (f5.bigip.ltm.monitor.Snmp_Dca_Base attribute),
102

raw (f5.bigip.ltm.monitor.Snmp_Dca_Bases attribute),
101

raw (f5.bigip.ltm.monitor.Snmp_Dcas attribute), 98
raw (f5.bigip.ltm.monitor.Soap attribute), 104
raw (f5.bigip.ltm.monitor.Soaps attribute), 103
raw (f5.bigip.ltm.monitor.Tcp attribute), 106
raw (f5.bigip.ltm.monitor.Tcp_Echo attribute), 109
raw (f5.bigip.ltm.monitor.Tcp_Echos attribute), 107
raw (f5.bigip.ltm.monitor.Tcp_Half_Open attribute), 111
raw (f5.bigip.ltm.monitor.Tcp_Half_Opens attribute),

109
raw (f5.bigip.ltm.monitor.Tcps attribute), 105
raw (f5.bigip.ltm.monitor.Udp attribute), 113
raw (f5.bigip.ltm.monitor.Udps attribute), 112
raw (f5.bigip.ltm.monitor.Virtual_Location attribute), 115
raw (f5.bigip.ltm.monitor.Virtual_Locations attribute),

114
raw (f5.bigip.ltm.monitor.Wap attribute), 117
raw (f5.bigip.ltm.monitor.Waps attribute), 116
raw (f5.bigip.ltm.monitor.Wmi attribute), 120
raw (f5.bigip.ltm.monitor.Wmis attribute), 118
raw (f5.bigip.ltm.nat.Nat attribute), 122
raw (f5.bigip.ltm.nat.Nats attribute), 121
raw (f5.bigip.ltm.node.Node attribute), 124
raw (f5.bigip.ltm.node.Nodes attribute), 123
raw (f5.bigip.ltm.policy.Actions attribute), 131
raw (f5.bigip.ltm.policy.Actions_s attribute), 130
raw (f5.bigip.ltm.policy.Conditions attribute), 133
raw (f5.bigip.ltm.policy.Conditions_s attribute), 132
raw (f5.bigip.ltm.policy.Policy attribute), 127
raw (f5.bigip.ltm.policy.Policys attribute), 125
raw (f5.bigip.ltm.policy.Rules attribute), 129
raw (f5.bigip.ltm.policy.Rules_s attribute), 128
raw (f5.bigip.ltm.pool.Members attribute), 138
raw (f5.bigip.ltm.pool.Members_s attribute), 137
raw (f5.bigip.ltm.pool.Pool attribute), 136
raw (f5.bigip.ltm.pool.Pools attribute), 135
raw (f5.bigip.ltm.rule.Rule attribute), 141
raw (f5.bigip.ltm.rule.Rules attribute), 139
raw (f5.bigip.ltm.snat.Snat attribute), 143
raw (f5.bigip.ltm.snat.Snats attribute), 142
raw (f5.bigip.ltm.virtual.Virtual attribute), 146
raw (f5.bigip.ltm.virtual.Virtuals attribute), 144
raw (f5.bigip.net.arp.Arp attribute), 149
raw (f5.bigip.net.arp.Arps attribute), 147
raw (f5.bigip.net.fdb.Fdbs attribute), 172
raw (f5.bigip.net.fdb.Tunnel attribute), 173
raw (f5.bigip.net.fdb.Tunnels attribute), 174
raw (f5.bigip.net.fdb.Vlans attribute), 175
raw (f5.bigip.net.interface.Interface attribute), 151
raw (f5.bigip.net.interface.Interfaces attribute), 150
raw (f5.bigip.net.route.Route attribute), 153

raw (f5.bigip.net.route.Routes attribute), 152
raw (f5.bigip.net.route_domain.Route_Domain attribute),

156
raw (f5.bigip.net.route_domain.Route_Domains at-

tribute), 154
raw (f5.bigip.net.selfip.Selfip attribute), 158
raw (f5.bigip.net.selfip.Selfips attribute), 157
raw (f5.bigip.net.tunnels.Gre attribute), 164
raw (f5.bigip.net.tunnels.Gres attribute), 163
raw (f5.bigip.net.tunnels.Tunnel attribute), 162
raw (f5.bigip.net.tunnels.Tunnels attribute), 160
raw (f5.bigip.net.tunnels.Tunnels_s attribute), 160
raw (f5.bigip.net.tunnels.Vxlan attribute), 166
raw (f5.bigip.net.tunnels.Vxlans attribute), 165
raw (f5.bigip.net.vlan.Interfaces attribute), 171
raw (f5.bigip.net.vlan.Interfaces_s attribute), 170
raw (f5.bigip.net.vlan.Vlan attribute), 169
raw (f5.bigip.net.vlan.Vlans attribute), 167
raw (f5.bigip.resource.Collection attribute), 201
raw (f5.bigip.resource.OrganizingCollection attribute),

200
raw (f5.bigip.resource.Resource attribute), 202
raw (f5.bigip.resource.ResourceBase attribute), 199
raw (f5.bigip.sys.application.Aplscript attribute), 179
raw (f5.bigip.sys.application.Aplscripts attribute), 177
raw (f5.bigip.sys.application.Applications attribute), 177
raw (f5.bigip.sys.application.Customstat attribute), 181
raw (f5.bigip.sys.application.Customstats attribute), 180
raw (f5.bigip.sys.application.Service attribute), 183
raw (f5.bigip.sys.application.Services attribute), 182
raw (f5.bigip.sys.application.Template attribute), 185
raw (f5.bigip.sys.application.Templates attribute), 184
raw (f5.bigip.sys.db.Db attribute), 187
raw (f5.bigip.sys.db.Dbs attribute), 186
raw (f5.bigip.sys.failover.Failover attribute), 189
raw (f5.bigip.sys.folder.Folders attribute), 190
raw (f5.bigip.sys.global_settings.Global_Settings at-

tribute), 191
raw (f5.bigip.sys.ntp.Ntp attribute), 192
raw (f5.bigip.sys.ntp.Restrict attribute), 194
raw (f5.bigip.sys.ntp.Restricts attribute), 193
raw (f5.bigip.sys.performance.All_Stats attribute), 196
raw (f5.bigip.sys.performance.Performance attribute),

195
Real_Server (class in f5.bigip.ltm.monitor), 83
Real_Servers (class in f5.bigip.ltm.monitor), 83
refresh() (f5.bigip.BigIP method), 21
refresh() (f5.bigip.cm.Cm method), 22
refresh() (f5.bigip.cm.device.Device method), 24
refresh() (f5.bigip.cm.device.Devices method), 23
refresh() (f5.bigip.cm.device_group.Device_Group

method), 27
refresh() (f5.bigip.cm.device_group.Device_Groups

method), 25

226 Index

F5 Python SDK Documentation, Release 0.1.1

refresh() (f5.bigip.cm.device_group.Devices method), 29
refresh() (f5.bigip.cm.device_group.Devices_s method),

28
refresh() (f5.bigip.cm.traffic_group.Traffic_Group

method), 31
refresh() (f5.bigip.cm.traffic_group.Traffic_Groups

method), 30
refresh() (f5.bigip.ltm.Ltm method), 32
refresh() (f5.bigip.ltm.monitor.Diameter method), 41
refresh() (f5.bigip.ltm.monitor.Diameters method), 39
refresh() (f5.bigip.ltm.monitor.Dns method), 43
refresh() (f5.bigip.ltm.monitor.Dns_s method), 41
refresh() (f5.bigip.ltm.monitor.External method), 45
refresh() (f5.bigip.ltm.monitor.Externals method), 44
refresh() (f5.bigip.ltm.monitor.Firepass method), 47
refresh() (f5.bigip.ltm.monitor.Firepass_s method), 46
refresh() (f5.bigip.ltm.monitor.Ftp method), 49
refresh() (f5.bigip.ltm.monitor.Ftps method), 48
refresh() (f5.bigip.ltm.monitor.Gateway_Icmp method),

51
refresh() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
refresh() (f5.bigip.ltm.monitor.Http method), 36
refresh() (f5.bigip.ltm.monitor.HttpS method), 38
refresh() (f5.bigip.ltm.monitor.Https method), 35
refresh() (f5.bigip.ltm.monitor.Https_s method), 37
refresh() (f5.bigip.ltm.monitor.Icmp method), 54
refresh() (f5.bigip.ltm.monitor.Icmps method), 52
refresh() (f5.bigip.ltm.monitor.Imap method), 56
refresh() (f5.bigip.ltm.monitor.Imaps method), 55
refresh() (f5.bigip.ltm.monitor.Inband method), 58
refresh() (f5.bigip.ltm.monitor.Inbands method), 57
refresh() (f5.bigip.ltm.monitor.Ldap method), 60
refresh() (f5.bigip.ltm.monitor.Ldaps method), 59
refresh() (f5.bigip.ltm.monitor.Module_Score method),

62
refresh() (f5.bigip.ltm.monitor.Module_Scores method),

61
refresh() (f5.bigip.ltm.monitor.Mssql method), 67
refresh() (f5.bigip.ltm.monitor.Mssqls method), 66
refresh() (f5.bigip.ltm.monitor.Mysql method), 65
refresh() (f5.bigip.ltm.monitor.Mysqls method), 63
refresh() (f5.bigip.ltm.monitor.Nntp method), 69
refresh() (f5.bigip.ltm.monitor.Nntps method), 68
refresh() (f5.bigip.ltm.monitor.NONE method), 71
refresh() (f5.bigip.ltm.monitor.Nones method), 70
refresh() (f5.bigip.ltm.monitor.Oracle method), 73
refresh() (f5.bigip.ltm.monitor.Oracles method), 72
refresh() (f5.bigip.ltm.monitor.Pop3 method), 76
refresh() (f5.bigip.ltm.monitor.Pop3s method), 74
refresh() (f5.bigip.ltm.monitor.Postgresql method), 78
refresh() (f5.bigip.ltm.monitor.Postgresqls method), 77
refresh() (f5.bigip.ltm.monitor.Radius method), 80

refresh() (f5.bigip.ltm.monitor.Radius_Accounting
method), 82

refresh() (f5.bigip.ltm.monitor.Radius_Accountings
method), 81

refresh() (f5.bigip.ltm.monitor.Radius_s method), 79
refresh() (f5.bigip.ltm.monitor.Real_Server method), 85
refresh() (f5.bigip.ltm.monitor.Real_Servers method), 83
refresh() (f5.bigip.ltm.monitor.Rpc method), 87
refresh() (f5.bigip.ltm.monitor.Rpcs method), 85
refresh() (f5.bigip.ltm.monitor.Sasp method), 89
refresh() (f5.bigip.ltm.monitor.Sasps method), 88
refresh() (f5.bigip.ltm.monitor.Scripted method), 91
refresh() (f5.bigip.ltm.monitor.Scripteds method), 90
refresh() (f5.bigip.ltm.monitor.Sip method), 93
refresh() (f5.bigip.ltm.monitor.Sips method), 92
refresh() (f5.bigip.ltm.monitor.Smb method), 95
refresh() (f5.bigip.ltm.monitor.Smbs method), 94
refresh() (f5.bigip.ltm.monitor.Smtp method), 98
refresh() (f5.bigip.ltm.monitor.Smtps method), 96
refresh() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
refresh() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102
refresh() (f5.bigip.ltm.monitor.Snmp_Dca_Bases

method), 101
refresh() (f5.bigip.ltm.monitor.Snmp_Dcas method), 99
refresh() (f5.bigip.ltm.monitor.Soap method), 104
refresh() (f5.bigip.ltm.monitor.Soaps method), 103
refresh() (f5.bigip.ltm.monitor.Tcp method), 106
refresh() (f5.bigip.ltm.monitor.Tcp_Echo method), 109
refresh() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
refresh() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
refresh() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

110
refresh() (f5.bigip.ltm.monitor.Tcps method), 105
refresh() (f5.bigip.ltm.monitor.Udp method), 113
refresh() (f5.bigip.ltm.monitor.Udps method), 112
refresh() (f5.bigip.ltm.monitor.Virtual_Location method),

115
refresh() (f5.bigip.ltm.monitor.Virtual_Locations

method), 114
refresh() (f5.bigip.ltm.monitor.Wap method), 117
refresh() (f5.bigip.ltm.monitor.Waps method), 116
refresh() (f5.bigip.ltm.monitor.Wmi method), 120
refresh() (f5.bigip.ltm.monitor.Wmis method), 118
refresh() (f5.bigip.ltm.nat.Nat method), 122
refresh() (f5.bigip.ltm.nat.Nats method), 121
refresh() (f5.bigip.ltm.node.Node method), 124
refresh() (f5.bigip.ltm.node.Nodes method), 123
refresh() (f5.bigip.ltm.policy.Actions method), 131
refresh() (f5.bigip.ltm.policy.Actions_s method), 130
refresh() (f5.bigip.ltm.policy.Conditions method), 133
refresh() (f5.bigip.ltm.policy.Conditions_s method), 132
refresh() (f5.bigip.ltm.policy.Policy method), 127

Index 227

F5 Python SDK Documentation, Release 0.1.1

refresh() (f5.bigip.ltm.policy.Policys method), 126
refresh() (f5.bigip.ltm.policy.Rules method), 129
refresh() (f5.bigip.ltm.policy.Rules_s method), 128
refresh() (f5.bigip.ltm.pool.Members method), 138
refresh() (f5.bigip.ltm.pool.Members_s method), 137
refresh() (f5.bigip.ltm.pool.Pool method), 136
refresh() (f5.bigip.ltm.pool.Pools method), 135
refresh() (f5.bigip.ltm.rule.Rule method), 141
refresh() (f5.bigip.ltm.rule.Rules method), 139
refresh() (f5.bigip.ltm.snat.Snat method), 143
refresh() (f5.bigip.ltm.snat.Snats method), 142
refresh() (f5.bigip.ltm.virtual.Virtual method), 146
refresh() (f5.bigip.ltm.virtual.Virtuals method), 144
refresh() (f5.bigip.net.arp.Arp method), 149
refresh() (f5.bigip.net.arp.Arps method), 147
refresh() (f5.bigip.net.fdb.Fdbs method), 172
refresh() (f5.bigip.net.fdb.Tunnel method), 173
refresh() (f5.bigip.net.fdb.Tunnels method), 174
refresh() (f5.bigip.net.fdb.Vlans method), 175
refresh() (f5.bigip.net.interface.Interface method), 151
refresh() (f5.bigip.net.interface.Interfaces method), 150
refresh() (f5.bigip.net.route.Route method), 153
refresh() (f5.bigip.net.route.Routes method), 152
refresh() (f5.bigip.net.route_domain.Route_Domain

method), 156
refresh() (f5.bigip.net.route_domain.Route_Domains

method), 154
refresh() (f5.bigip.net.selfip.Selfip method), 158
refresh() (f5.bigip.net.selfip.Selfips method), 157
refresh() (f5.bigip.net.tunnels.Gre method), 164
refresh() (f5.bigip.net.tunnels.Gres method), 163
refresh() (f5.bigip.net.tunnels.Tunnel method), 162
refresh() (f5.bigip.net.tunnels.Tunnels method), 160
refresh() (f5.bigip.net.tunnels.Tunnels_s method), 160
refresh() (f5.bigip.net.tunnels.Vxlan method), 166
refresh() (f5.bigip.net.tunnels.Vxlans method), 165
refresh() (f5.bigip.net.vlan.Interfaces method), 171
refresh() (f5.bigip.net.vlan.Interfaces_s method), 170
refresh() (f5.bigip.net.vlan.Vlan method), 169
refresh() (f5.bigip.net.vlan.Vlans method), 167
refresh() (f5.bigip.resource.Collection method), 201
refresh() (f5.bigip.resource.OrganizingCollection

method), 200
refresh() (f5.bigip.resource.Resource method), 203
refresh() (f5.bigip.resource.ResourceBase method), 199
refresh() (f5.bigip.sys.application.Aplscript method), 179
refresh() (f5.bigip.sys.application.Aplscripts method),

177
refresh() (f5.bigip.sys.application.Applications method),

177
refresh() (f5.bigip.sys.application.Customstat method),

181
refresh() (f5.bigip.sys.application.Customstats method),

180

refresh() (f5.bigip.sys.application.Service method), 183
refresh() (f5.bigip.sys.application.Services method), 182
refresh() (f5.bigip.sys.application.Template method), 185
refresh() (f5.bigip.sys.application.Templates method),

184
refresh() (f5.bigip.sys.db.Db method), 187
refresh() (f5.bigip.sys.db.Dbs method), 186
refresh() (f5.bigip.sys.failover.Failover method), 189
refresh() (f5.bigip.sys.folder.Folders method), 190
refresh() (f5.bigip.sys.global_settings.Global_Settings

method), 191
refresh() (f5.bigip.sys.ntp.Ntp method), 192
refresh() (f5.bigip.sys.ntp.Restrict method), 195
refresh() (f5.bigip.sys.ntp.Restricts method), 193
refresh() (f5.bigip.sys.performance.All_Stats method),

196
refresh() (f5.bigip.sys.performance.Performance

method), 196
Resource (class in f5.bigip.resource), 201
ResourceBase (class in f5.bigip.resource), 198
Restrict (class in f5.bigip.sys.ntp), 193
Restricts (class in f5.bigip.sys.ntp), 193
Route (class in f5.bigip.net.route), 152
Route_Domain (class in f5.bigip.net.route_domain), 155
Route_Domains (class in f5.bigip.net.route_domain), 154
Routes (class in f5.bigip.net.route), 151
Rpc (class in f5.bigip.ltm.monitor), 86
Rpcs (class in f5.bigip.ltm.monitor), 85
Rule (class in f5.bigip.ltm.rule), 140
Rules (class in f5.bigip.ltm.policy), 128
Rules (class in f5.bigip.ltm.rule), 139
Rules_s (class in f5.bigip.ltm.policy), 127

S
Sasp (class in f5.bigip.ltm.monitor), 88
Sasps (class in f5.bigip.ltm.monitor), 87
Scripted (class in f5.bigip.ltm.monitor), 90
Scripteds (class in f5.bigip.ltm.monitor), 89
section_map (f5.common.iapp_parser.IappParser at-

tribute), 204
sections_not_required (f5.common.iapp_parser.IappParser

attribute), 204
Selfip (class in f5.bigip.net.selfip), 157
Selfips (class in f5.bigip.net.selfip), 156
Service (class in f5.bigip.sys.application), 182
Services (class in f5.bigip.sys.application), 181
Sip (class in f5.bigip.ltm.monitor), 92
Sips (class in f5.bigip.ltm.monitor), 91
Smb (class in f5.bigip.ltm.monitor), 94
Smbs (class in f5.bigip.ltm.monitor), 94
Smtp (class in f5.bigip.ltm.monitor), 97
Smtps (class in f5.bigip.ltm.monitor), 96
Snat (class in f5.bigip.ltm.snat), 142
Snats (class in f5.bigip.ltm.snat), 141

228 Index

F5 Python SDK Documentation, Release 0.1.1

Snmp_Dca (class in f5.bigip.ltm.monitor), 99
Snmp_Dca_Base (class in f5.bigip.ltm.monitor), 101
Snmp_Dca_Bases (class in f5.bigip.ltm.monitor), 100
Snmp_Dcas (class in f5.bigip.ltm.monitor), 98
Soap (class in f5.bigip.ltm.monitor), 103
Soaps (class in f5.bigip.ltm.monitor), 102

T
tcl_list_for_attr_re (f5.common.iapp_parser.IappParser

attribute), 204
tcl_list_for_section_re (f5.common.iapp_parser.IappParser

attribute), 204
tcl_list_patterns (f5.common.iapp_parser.IappParser at-

tribute), 204
Tcp (class in f5.bigip.ltm.monitor), 105
Tcp_Echo (class in f5.bigip.ltm.monitor), 108
Tcp_Echos (class in f5.bigip.ltm.monitor), 107
Tcp_Half_Open (class in f5.bigip.ltm.monitor), 110
Tcp_Half_Opens (class in f5.bigip.ltm.monitor), 109
Tcps (class in f5.bigip.ltm.monitor), 105
Template (class in f5.bigip.sys.application), 184
template_attrs (f5.common.iapp_parser.IappParser

attribute), 204
template_sections (f5.common.iapp_parser.IappParser at-

tribute), 204
Templates (class in f5.bigip.sys.application), 183
ToDictMixin (class in f5.bigip.mixins), 203
toggle_standby() (f5.bigip.sys.failover.Failover method),

188
Traffic_Group (class in f5.bigip.cm.traffic_group), 30
Traffic_Groups (class in f5.bigip.cm.traffic_group), 29
Tunnel (class in f5.bigip.net.fdb), 172
Tunnel (class in f5.bigip.net.tunnels), 161
Tunnels (class in f5.bigip.net.fdb), 174
Tunnels (class in f5.bigip.net.tunnels), 160
Tunnels_s (class in f5.bigip.net.tunnels), 159

U
Udp (class in f5.bigip.ltm.monitor), 112
Udps (class in f5.bigip.ltm.monitor), 111
UnnamedResourceMixin (class in f5.bigip.mixins), 203
UnregisteredKind, 198
UnsupportedOperation, 198
update() (f5.bigip.BigIP method), 21
update() (f5.bigip.cm.Cm method), 22
update() (f5.bigip.cm.device.Device method), 24
update() (f5.bigip.cm.device.Devices method), 23
update() (f5.bigip.cm.device_group.Device_Group

method), 27
update() (f5.bigip.cm.device_group.Device_Groups

method), 26
update() (f5.bigip.cm.device_group.Devices method), 29
update() (f5.bigip.cm.device_group.Devices_s method),

28

update() (f5.bigip.cm.traffic_group.Traffic_Group
method), 31

update() (f5.bigip.cm.traffic_group.Traffic_Groups
method), 30

update() (f5.bigip.ltm.Ltm method), 32
update() (f5.bigip.ltm.monitor.Diameter method), 41
update() (f5.bigip.ltm.monitor.Diameters method), 39
update() (f5.bigip.ltm.monitor.Dns method), 43
update() (f5.bigip.ltm.monitor.Dns_s method), 42
update() (f5.bigip.ltm.monitor.External method), 45
update() (f5.bigip.ltm.monitor.Externals method), 44
update() (f5.bigip.ltm.monitor.Firepass method), 47
update() (f5.bigip.ltm.monitor.Firepass_s method), 46
update() (f5.bigip.ltm.monitor.Ftp method), 49
update() (f5.bigip.ltm.monitor.Ftps method), 48
update() (f5.bigip.ltm.monitor.Gateway_Icmp method),

52
update() (f5.bigip.ltm.monitor.Gateway_Icmps method),

50
update() (f5.bigip.ltm.monitor.Http method), 36
update() (f5.bigip.ltm.monitor.HttpS method), 38
update() (f5.bigip.ltm.monitor.Https method), 35
update() (f5.bigip.ltm.monitor.Https_s method), 37
update() (f5.bigip.ltm.monitor.Icmp method), 54
update() (f5.bigip.ltm.monitor.Icmps method), 52
update() (f5.bigip.ltm.monitor.Imap method), 56
update() (f5.bigip.ltm.monitor.Imaps method), 55
update() (f5.bigip.ltm.monitor.Inband method), 58
update() (f5.bigip.ltm.monitor.Inbands method), 57
update() (f5.bigip.ltm.monitor.Ldap method), 60
update() (f5.bigip.ltm.monitor.Ldaps method), 59
update() (f5.bigip.ltm.monitor.Module_Score method),

63
update() (f5.bigip.ltm.monitor.Module_Scores method),

61
update() (f5.bigip.ltm.monitor.Mssql method), 67
update() (f5.bigip.ltm.monitor.Mssqls method), 66
update() (f5.bigip.ltm.monitor.Mysql method), 65
update() (f5.bigip.ltm.monitor.Mysqls method), 63
update() (f5.bigip.ltm.monitor.Nntp method), 69
update() (f5.bigip.ltm.monitor.Nntps method), 68
update() (f5.bigip.ltm.monitor.NONE method), 71
update() (f5.bigip.ltm.monitor.Nones method), 70
update() (f5.bigip.ltm.monitor.Oracle method), 74
update() (f5.bigip.ltm.monitor.Oracles method), 72
update() (f5.bigip.ltm.monitor.Pop3 method), 76
update() (f5.bigip.ltm.monitor.Pop3s method), 74
update() (f5.bigip.ltm.monitor.Postgresql method), 78
update() (f5.bigip.ltm.monitor.Postgresqls method), 77
update() (f5.bigip.ltm.monitor.Radius method), 80
update() (f5.bigip.ltm.monitor.Radius_Accounting

method), 82
update() (f5.bigip.ltm.monitor.Radius_Accountings

method), 81

Index 229

F5 Python SDK Documentation, Release 0.1.1

update() (f5.bigip.ltm.monitor.Radius_s method), 79
update() (f5.bigip.ltm.monitor.Real_Server method), 83
update() (f5.bigip.ltm.monitor.Real_Servers method), 83
update() (f5.bigip.ltm.monitor.Rpc method), 87
update() (f5.bigip.ltm.monitor.Rpcs method), 86
update() (f5.bigip.ltm.monitor.Sasp method), 89
update() (f5.bigip.ltm.monitor.Sasps method), 88
update() (f5.bigip.ltm.monitor.Scripted method), 91
update() (f5.bigip.ltm.monitor.Scripteds method), 90
update() (f5.bigip.ltm.monitor.Sip method), 93
update() (f5.bigip.ltm.monitor.Sips method), 92
update() (f5.bigip.ltm.monitor.Smb method), 96
update() (f5.bigip.ltm.monitor.Smbs method), 94
update() (f5.bigip.ltm.monitor.Smtp method), 98
update() (f5.bigip.ltm.monitor.Smtps method), 96
update() (f5.bigip.ltm.monitor.Snmp_Dca method), 100
update() (f5.bigip.ltm.monitor.Snmp_Dca_Base method),

102
update() (f5.bigip.ltm.monitor.Snmp_Dca_Bases

method), 101
update() (f5.bigip.ltm.monitor.Snmp_Dcas method), 99
update() (f5.bigip.ltm.monitor.Soap method), 104
update() (f5.bigip.ltm.monitor.Soaps method), 103
update() (f5.bigip.ltm.monitor.Tcp method), 107
update() (f5.bigip.ltm.monitor.Tcp_Echo method), 109
update() (f5.bigip.ltm.monitor.Tcp_Echos method), 107
update() (f5.bigip.ltm.monitor.Tcp_Half_Open method),

111
update() (f5.bigip.ltm.monitor.Tcp_Half_Opens method),

110
update() (f5.bigip.ltm.monitor.Tcps method), 105
update() (f5.bigip.ltm.monitor.Udp method), 113
update() (f5.bigip.ltm.monitor.Udps method), 112
update() (f5.bigip.ltm.monitor.Virtual_Location method),

115
update() (f5.bigip.ltm.monitor.Virtual_Locations

method), 114
update() (f5.bigip.ltm.monitor.Wap method), 118
update() (f5.bigip.ltm.monitor.Waps method), 116
update() (f5.bigip.ltm.monitor.Wmi method), 119
update() (f5.bigip.ltm.monitor.Wmis method), 118
update() (f5.bigip.ltm.nat.Nats method), 121
update() (f5.bigip.ltm.node.Node method), 123
update() (f5.bigip.ltm.node.Nodes method), 123
update() (f5.bigip.ltm.policy.Actions method), 131
update() (f5.bigip.ltm.policy.Actions_s method), 130
update() (f5.bigip.ltm.policy.Conditions method), 134
update() (f5.bigip.ltm.policy.Conditions_s method), 132
update() (f5.bigip.ltm.policy.Policy method), 127
update() (f5.bigip.ltm.policy.Policys method), 126
update() (f5.bigip.ltm.policy.Rules method), 129
update() (f5.bigip.ltm.policy.Rules_s method), 128
update() (f5.bigip.ltm.pool.Members method), 137
update() (f5.bigip.ltm.pool.Members_s method), 137

update() (f5.bigip.ltm.pool.Pool method), 136
update() (f5.bigip.ltm.pool.Pools method), 135
update() (f5.bigip.ltm.rule.Rule method), 141
update() (f5.bigip.ltm.rule.Rules method), 140
update() (f5.bigip.ltm.snat.Snat method), 143
update() (f5.bigip.ltm.snat.Snats method), 142
update() (f5.bigip.ltm.virtual.Virtual method), 146
update() (f5.bigip.ltm.virtual.Virtuals method), 145
update() (f5.bigip.net.arp.Arp method), 149
update() (f5.bigip.net.arp.Arps method), 147
update() (f5.bigip.net.fdb.Fdbs method), 172
update() (f5.bigip.net.fdb.Tunnel method), 174
update() (f5.bigip.net.fdb.Tunnels method), 174
update() (f5.bigip.net.fdb.Vlans method), 175
update() (f5.bigip.net.interface.Interface method), 151
update() (f5.bigip.net.interface.Interfaces method), 150
update() (f5.bigip.net.route.Route method), 153
update() (f5.bigip.net.route.Routes method), 152
update() (f5.bigip.net.route_domain.Route_Domain

method), 156
update() (f5.bigip.net.route_domain.Route_Domains

method), 155
update() (f5.bigip.net.selfip.Selfip method), 159
update() (f5.bigip.net.selfip.Selfips method), 157
update() (f5.bigip.net.tunnels.Gre method), 164
update() (f5.bigip.net.tunnels.Gres method), 163
update() (f5.bigip.net.tunnels.Tunnel method), 162
update() (f5.bigip.net.tunnels.Tunnels method), 161
update() (f5.bigip.net.tunnels.Tunnels_s method), 160
update() (f5.bigip.net.tunnels.Vxlan method), 166
update() (f5.bigip.net.tunnels.Vxlans method), 165
update() (f5.bigip.net.vlan.Interfaces method), 171
update() (f5.bigip.net.vlan.Interfaces_s method), 170
update() (f5.bigip.net.vlan.Vlan method), 169
update() (f5.bigip.net.vlan.Vlans method), 168
update() (f5.bigip.resource.Collection method), 201
update() (f5.bigip.resource.OrganizingCollection

method), 200
update() (f5.bigip.resource.Resource method), 202
update() (f5.bigip.resource.ResourceBase method), 199
update() (f5.bigip.sys.application.Aplscript method), 179
update() (f5.bigip.sys.application.Aplscripts method),

178
update() (f5.bigip.sys.application.Applications method),

177
update() (f5.bigip.sys.application.Customstat method),

181
update() (f5.bigip.sys.application.Customstats method),

180
update() (f5.bigip.sys.application.Service method), 182
update() (f5.bigip.sys.application.Services method), 182
update() (f5.bigip.sys.application.Template method), 185
update() (f5.bigip.sys.application.Templates method),

184

230 Index

F5 Python SDK Documentation, Release 0.1.1

update() (f5.bigip.sys.db.Db method), 188
update() (f5.bigip.sys.db.Dbs method), 187
update() (f5.bigip.sys.failover.Failover method), 188
update() (f5.bigip.sys.folder.Folders method), 190
update() (f5.bigip.sys.global_settings.Global_Settings

method), 191
update() (f5.bigip.sys.ntp.Ntp method), 192
update() (f5.bigip.sys.ntp.Restrict method), 195
update() (f5.bigip.sys.ntp.Restricts method), 193
update() (f5.bigip.sys.performance.All_Stats method),

196
update() (f5.bigip.sys.performance.Performance method),

196
URICreationCollision, 198

V
Virtual (class in f5.bigip.ltm.virtual), 145
Virtual_Location (class in f5.bigip.ltm.monitor), 114
Virtual_Locations (class in f5.bigip.ltm.monitor), 113
Virtuals (class in f5.bigip.ltm.virtual), 144
Vlan (class in f5.bigip.net.vlan), 168
Vlans (class in f5.bigip.net.fdb), 175
Vlans (class in f5.bigip.net.vlan), 167
Vxlan (class in f5.bigip.net.tunnels), 165
Vxlans (class in f5.bigip.net.tunnels), 164

W
Wap (class in f5.bigip.ltm.monitor), 116
Waps (class in f5.bigip.ltm.monitor), 116
Wmi (class in f5.bigip.ltm.monitor), 119
Wmis (class in f5.bigip.ltm.monitor), 118

Index 231

	Introduction
	Quick Start
	Installation
	Basic Example

	Detailed Documentation
	User Guide
	Basic Concepts
	REST URIs
	REST Endpoints
	Dynamic Attributes
	iControl REST kind Parameters
	Methods

	REST API Endpoints
	Overview
	Endpoints

	Python Object Paths
	Organizing Collection
	Collection
	Resource
	Subcollection
	Subcollection Resource

	Coding Example
	Further Reading

	Developer Guide
	f5
	f5 package
	f5.bigip
	f5.common
	f5.sdk_exception

	Contact
	Copyright
	Support
	License
	Apache V2.0
	Contributor License Agreement

	Python Module Index

